《基于超构材料的红外和雷达兼容隐身材料应用.docx》由会员分享,可在线阅读,更多相关《基于超构材料的红外和雷达兼容隐身材料应用.docx(11页珍藏版)》请在第一文库网上搜索。
1、基于超构材料的红外和雷达兼容隐身材料应用目录1.序言1?红外隐身、雷达吸波、超材料隐身三足鼎立1?红外和雷达兼容隐身原理与途径3?红外和雷达兼容隐身超构材料5?基于光子晶体的红外和雷达兼容隐身材料5?基于吸波超构材料的红外和雷达兼容隐身材料6?基于编码超构材料的红外和雷达兼容隐身材料9?结语111.序百运用各种侦察探测手段,实现战场透明化是现代信息化战争的一个基本特点。红外探测和雷达探测被广泛应用于战场,这促使红外和雷达兼容隐身技术成为了对抗探测的研究重点。相较于传统红外和雷达兼容隐身材料,基于超构材料的新型红外和雷达兼容隐身材料表现出更加优异的性能。据麦姆斯咨询报道,近期,国防科技大学和中国
2、人民解放军96901部队的科研团队在材料导报期刊上发表了以“基于超材料的红外/雷达兼容隐身材料研究进”为主题的文章。该文章第一作者为孟真,通讯作者为刘东青副教授,主要从事红外辐射调控材料及其在自适应伪装、红外隐身和智能热控等技术的应用研究工作。本文对实现红外和雷达兼容隐身的原理和途径进行了阐述,重点综述了基于光子晶体、吸波超构材料和编码超构材料的红外和雷达兼容隐身材料的研究现状以及进展,并分析了红外和雷达兼容隐身材料的发展趋势。红外隐身、雷达吸波、超材料隐身三足鼎立隐身材料已广泛应用于多种武器装备和各军种。全球范围内,各军事强国对武器装备的隐身性能均较为重视,已应用于如飞机和航空发动机、导弹、
3、舰船、武装直升机等,分布于空军、海军、陆军和导弹部队等各军兵种。先进院科技雷达吸波材料(RAM)是指能有效地吸收入射雷达波,而使被探测目标回波强度显著衰减的一类功能材料,是应对雷达探测的主要手段。RAM隐身通过材料的吸收性能,吸收衰减入射的雷达波,并将其电磁能转换成热能,而耗散掉,降低目标的回波强度,达到在所有方向上同时减小雷达散射截面的隐身效果。它的工作原理与材料的电磁特性有关。理想的吸波材料应具备:质量轻、频幅宽、密度低、厚度薄、成本低、黏附力强等特点。先进院科技红外隐身技术目前应用于隐形战机发动机的涡轮叶片、加力燃烧室内锥、尾喷管调节片等零部件工作温度高的部件。对于发动机静子叶片、隔热屏
4、及喷管的外调节片和弹性片等零部件,则需要雷达波隐身技术。隐身涂层和薄膜的制备技术包括磁控溅射、涂料喷涂加固化等工艺,热喷涂吸波涂层是近年来出现的新技术,主要被用于高温陶瓷和铁氧体吸波涂层。多频谱隐身材料或成为重点发展方向。当同一区域有不同的探测手段时,出现多波段监测时,具有某一特定的隐身功能就可能失效,就会造成目标暴露,因此需要将多种隐身技术相结合。目前国内外研究较多的多频谱隐身材料主要有:雷达与红外兼容隐身材料、红外与激光兼容隐身材料、红外与可见光兼容隐身材料,以及覆盖包括可见光、近红外、远红外和微波在内的多波段隐身材料。目前实现雷达和红外兼容隐身的主要途径是将红外隐身材料和雷达吸波材料相互
5、叠加复合。常用的手段是采用双层涂覆方法,即在雷达隐身涂层物体表面涂覆一层红外隐身涂层。在实际应用中,红外隐身涂层除了要具有较低的发射率,还要满足一定的机械性能以及耐腐蚀性等要求,因此红外涂层的厚度和金属颜料含量必须达到一定值。在双层涂覆的基础上,又发展了多涂层、混合涂层和改性涂层等雷达和红外兼容隐身的材料。多涂层是指利用材料性能的不同,先后涂覆不同的材料达到多种兼容的目的:混合涂层,是指通过混合或者掺杂形成单一涂层达到兼容隐身的目的;改性涂层是将吸波材料进行改性,使其在具备吸波性能的同时增加红外性能,随后制备成涂层达到兼容隐身的效果。先进院科技超材料为不同于红外隐身、雷达吸波材料的另一种隐身途
6、径。超材料是指一些具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。超材料不单是一种材料形态,也代表一种新的材料设计理念。在超材料出现之前,人们是根据自然界存在的材料,开发出想要的电磁特性,而超材料通过逆向设计,即根据人们的应用需求,通过对微观单元的结构设计来打破自然规律的限制,从而获得具有特异性能的材料。狭义上的超材料特指左手材料,又叫双负材料,即一种介电常数和磁导率U均为负的人工周期介质材料。广义上的超材料指原本自然界中不存在,由人工设计、制造出来的,具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。超材料作用范围可以横跨整个波谱频段。理论上,针对不同的波长,都可以设计
7、出在此波谱范围起作用的超材料。结构特征单元的尺度及形貌由工作波段的波长决定。典型的超材料有对光起作用的光子晶体,其单元大小在纳米和微米量级;对电磁起作用的左手材料、超磁材料,其单元大小在微米到厘米量级;对声波起作用的声子晶体、金属水,其单元大小在厘米到米量级。?.红外和雷达兼容隐身原理与途径红外隐身,顾名思义就是降低目标被红外探测器(红外探测系统)发现的概率,达到隐身的目的。红外探测器通过对物体发射的红外线进行感光成像,进而可以发现与背景存在较大红外辐射差异的位置。一般而言,武器装备以及作战人员相较于环境背景均具有较强的红外辐射。控制目标红外辐射实现红外隐身的两个途径:一是控制目标表面的红外发
8、射率;二是控制目标的表面温度。通常为了实现军事目标的红外隐身,需要尽可能降低其表面温度和所用材料的红外发射率。雷达通过主动发射并接收目标被动反射的电磁波实现对目标的探测。雷达隐身的目的就是降低目标被雷达探测设备发现的概率。雷达散射截面(RCS)就是反映目标在受到电磁波照射后,向雷达接收方向散射电磁波能力的量。通过降低目标的RCS可以减小目标被探测的距离,进而降低目标被发现的概率。降低武器装备RCS的主要途径有:一是通过外形设计等方法来改变散射波的方向;二是通过雷达吸波材料吸收入射的电磁波。红外和雷达兼容隐身材料要能够在红外和雷达两个频段同时具有隐身能力,然而不同频段对隐身材料的电磁特性一般具有
9、不同的要求,甚至在某些方面是相互限制的。红外隐身一般要求材料具有低发射率,根据基尔霍夫定律也就是低吸收率;而雷达隐身为了更好地吸收入射电磁波,则一般要求材料具有高吸收率,这就导致红外隐身和雷达隐身在隐身材料吸收率上存在机理上的矛盾,这也正是红外隐身和雷达隐身兼容的科学难点所在。因此,红外和雷达兼容隐身材料的研究重点是在借助上述能够实现红外隐身和雷达隐身的途径的基础上,尽可能降低两者在隐身性能上的相互影响。目前常见的红外和雷达兼容的隐身材料实现的途径可概括为以下两种:第一,通过研制单一型材料,使其能够同时实现红外低辐射和雷达高吸收,实现红外和雷达兼容隐身。第二,将能够分别实现红外隐身和雷达隐身的
10、两种材料进行复合,且复合后两种材料依然能够较好地保持各自的隐身性能。红外隐身材料和雷达隐身材料在材料吸收率上存在隐身机理方面的矛盾,这导致通过单一型传统材料实现两者的兼容难度较大。但是通过单一型传统材料实现红外和雷达兼容依然是梦寐以求的,为此很多学者也进行了大量研究。目前国内外研究较多的单一型传统红外和雷达兼容隐身材料可分为导电聚合物、纳米材料和掺杂氧化物半导体三类。超构材料(Metamateria1S)是一种由亚波长的周期性或非周期性单元结构组成的人工材料。通过设计可以实现天然材料所不具备的超常物理特性。不同于传统材料,超构材料的性质不由其化学组成成分的固有性质所决定,而是取决于组成材料的周
11、期单元的性质。随着研究的深入,超构材料的概念也在不断地发展完善,其涵盖的研究领域及涉及范围也不断扩大,包括左手材料、电磁超构材料、光学超构材料、声学超构材料、力学超构材料等。其中,电磁超构材料通过调节其人工结构单元的结构参数,可实现对超构材料电磁参数的自由设计,进而实现对在其中传播的电磁波的相位、幅值、极化等的自由调控。光子晶体是由不同介电常数的介质周期性排列而成的、能够实现对电磁波调控的人工结构材料,因此通常被认为是电磁超构材料的一个分支。吸波超构材料,也被称作超构材料吸波体,是指由超构材料结构和介质基板组成的一类复合吸波材料,它基于阻抗匹配和电磁谐振机理能够实现对入射电磁波的完美吸收,也是
12、电磁超构材料的一个重要分支。相较于传统吸波材料,吸波超构材料具有厚度薄、质量轻、吸收强以及电磁参数可调等优点,在隐身领域表现出独特优势。编码超构材料是电磁超构材料的一个新兴分支,它将数字编码的思想融入到了超构材料设计,将具有不同相位响应的结构单元进行编码,通过设计编码序列可以实现对电磁波的调控。光子晶体、吸波超构材料和编码超构材料均属于电磁超构材料的范畴,都具有超构材料的人工设计和亚波长周期结构的特性,其对电磁波的调控特性更大程度上取决于其周期结构而不是材料本身的性质。三者的不同之处在于具有不同的调控机理,光子晶体通过调控光子禁带的位置实现对电磁波反射和透过的控制,吸波超构材料借助于阻抗匹配和
13、电磁谐振实现完美吸收,编码超构材料则是通过对电磁波反射相位的控制实现了对电磁波的操控。由于超构材料能够灵活地调控电磁波,其在隐身技术领域的研究价值也日益凸显,相关方面的研究也逐渐深入。超构材料的出现也为红外和雷达兼容隐身材料设计提供了一种全新的思路,基于光子晶体、吸波超构材料和编码超构材料的红外和雷达兼容隐身材料也得到了迅速的发展。?.红外和雷达兼容隐身超构材料?.1基于光子晶体的红外和雷达兼容隐身材料光子晶体是一种由不同介电常数的材料周期性排列组成的具有光子禁带的新型人工结构材料。1987年Yab1onovitch和John几乎同时提出了光子晶体的概念。光子晶体对处于光子禁带范围内的电磁波表
14、现出高反射的特性,而对处于光子晶体通带范围内的电磁波表现出高透过的特性。通过人工设计材料组成、材料介电常数以及晶格参数等可以实现对光子带隙位置的调控,将其禁带调控至红外探测波段,则可以有效地抑制红外辐射,实现红外隐身的目的。利用雷达透波材料进行光子晶体的设计,是实现红外和雷达的兼容隐身的常见技术手段之一。2014年,Wang等基于薄膜光学理论的传输矩阵方法,研究了由不同厚度的Ge和ZnS交替叠层构成结构的传输特性。基于理论研究基础设计并制备了一种新型一维双异质结构复合光子晶体(CPC),制备样品横截面的SEM照片如图Ia所示。2023年,汪家春等提出了一种基于光子晶体薄膜材料的多波段隐身衣,该
15、隐身衣的组成如a所示,包括光子晶体光学红外复合隐身层和柔性雷达吸波基布层两部分。光子晶体光学红外复合隐身层是一种如图2c所示的薄膜结构。同年,该团队的程立又提出将能够实现雷达隐身的等离子体层和能够实现红外隐身且允许雷达波无损透射的光子晶体薄膜整合,实现了红外和雷达兼容隐身。图2隐身衣组成示意图和结构示意图;(C)隐身衣光子晶体结构示意光子晶体除了被用于进行红外和雷达兼容隐身设计外,还被广泛用于进行红外与可见光、激光等其他频段的多频谱兼容隐身设计。光子晶体依靠其可设计性强、性能易调控的优点被广泛应用于红外隐身材料的设计,利用微波高透材料进行光子晶体设计再结合雷达吸波材料则可以实现红外隐身与雷达隐
16、身的兼容。利用光谱挖空原理和薄膜干涉等理论,光子晶体可以进一步实现与激光、可见光隐身的兼容,使其在多频谱兼容隐身材料设计方面表现出独特的优势。然而,在实际工程应用方面来看,光子晶体对材料体系的选择比较苛刻,很多常用的半导体材料价格昂贵,大规模制造依然成本较高;并且膜层厚度以及均匀程度对其性能影响较大,这也对制备工艺提出了较高的要求。此外,目前针对红外和雷达兼容隐身光子晶体的研究还主要集中在一维光子晶体,其层层堆叠的制备形式较为单一,限制了其发展,后续应该拓宽研究思路,进一步加强二维以及三维光子晶体用于红外和雷达兼容隐身设计的研究。?.2.基于吸波超构材料的红外和雷达兼容隐身材料基于阻抗匹配和电磁谐振理论,吸波超构材料能够实现对入射电磁波的完美吸收。2008年,1andy等最早设计出一种能够在GHz频段实现接近100%“完美”吸收的超构材料吸波体,其结构单元包含电