《《全等三角形的判定SSS》说课稿.docx》由会员分享,可在线阅读,更多相关《《全等三角形的判定SSS》说课稿.docx(6页珍藏版)》请在第一文库网上搜索。
1、全等三角形的判定一一边边边(说课稿)各位老师,大家好!今天我说课的题目是全等三角形的判定一一边边边这是冀教版八年级上册第十三章全等三角形的第3节的内容。下面,我将从教材分析、学情分析、教法分析、学法分析及教学过程五个方面对本课的设计进行说明。一、教材分析1 .教材的地位和作用本节课是在学习了全等三角形的定义及性质之后展开的,是证明两个三角形全等的重要方法之一。全等三角形是两个三角形最简单、最常见的关系,它不仅是学习后面知识的基础,而且也是证明线段、角相等的重要依据。2 .学情分析八年级学生的思维比较活跃,喜欢动手实践,具有一定的自主探究、分析和解决问题的能力,但逻辑分析和准确的语言表达能力较弱
2、,所以让学生通过动手操作,合作探究、总结归纳出三角形全等的判定方法还是有一定的难度。二、教学目标在本课的教学中,不仅要让学生学会“边边边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想.从而激发学生学习数学的兴趣.为此,本节课的学习目标确立如下:1 .知识目标:掌握“三边对应相等的两个三角形全等”这一基本事实,能用其解决一些实际问题。2 .能力目标:经历探索三角形全等条件的过程,让学生初步体会分类讨论的思想,提高分析、解决问题的能力。3 .情感目标:通过探究活动,培养学生合作交流的意识和勇于探索、团结协作的精神。教学重点:掌握“三边对应相等的两个三角
3、形全等”这一基本事实,并会利用三角形的全等证明线段、角相等。教学难点:全等三角形的判定一一边边边(说课稿)各位老师,大家好!今天我说课的题目是全等三角形的判定一一边边边这是冀教版八年级上册第十三章全等三角形的第3节的内容。下面,我将从教材分析、学情分析、教法分析、学法分析及教学过程五个方面对本课的设计进行说明。一、教材分析1 .教材的地位和作用本节课是在学习了全等三角形的定义及性质之后展开的,是证明两个三角形全等的重要方法之一。全等三角形是两个三角形最简单、最常见的关系,它不仅是学习后面知识的基础,而且也是证明线段、角相等的重要依据。2 .学情分析八年级学生的思维比较活跃,喜欢动手实践,具有一
4、定的自主探究、分析和解决问题的能力,但逻辑分析和准确的语言表达能力较弱,所以让学生通过动手操作,合作探究、总结归纳出三角形全等的判定方法还是有一定的难度。二、教学目标在本课的教学中,不仅要让学生学会“边边边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想.从而激发学生学习数学的兴趣.为此,本节课的学习目标确立如下:1 .知识目标:掌握“三边对应相等的两个三角形全等”这一基本事实,能用其解决一些实际问题。2 .能力目标:经历探索三角形全等条件的过程,让学生初步体会分类讨论的思想,提高分析、解决问题的能力。3 .情感目标:通过探究活动,培养学生合作交流的
5、意识和勇于探索、团结协作的精神。教学重点:掌握“三边对应相等的两个三角形全等”这一基本事实,并会利用三角形的全等证明线段、角相等。教学难点:探究三角形全等的条件。两内角:两角分别为30。和60。边一内角:一边为4cm 、一角为30 .组织学生分组进行讨论交流,通过思考、画图探究出满足一个或两个条件的两个三角形不一定全等。教师利用课件演示两个三角形不全等的例子。得出结论:两个三角形若满足六个条件中的一个或两个,是不一定保证这两个三角形全等的【设计意图】:多媒体演示形象直观,可以清楚的展示出满足一个或两个条件所画出的三角形不全等,让学生体会分类讨论的思想。探究三:满足三个条件有几种情形呢?它们能保
6、证两个三角形全等吗?四种情况:1.三边对应相等2 .三角对应相等3 .两边一角对应相等4 .两角一边对应相等继续追问:有三个角对应相等的两个三角形一定全等吗?满足三个条件中的三边对应相等的两个三角形一定全等吗?动手操作:准备一些长都是13cm的细铁丝。(1)和同学一起,每人用一根铁丝,折成一个边长分别是3cm, 4cm, 6cm的三角形。把你做出的三角形和同学做出的三角形进行比较,它们能重合吗?(2)和同学一起,每人用一根铁丝,余下1cm,用其余部分折力戈边长分别是3c, 4cm, 5cm的三角形。再和同学做出的三角形进行比较,它们能重合吗?(3)每人用一根铁丝,任取T且能够构成三角形的三边长
7、的数据,和同桌分别按这些数据折三角形,折成的两个三角形能重合吗?此环节通过学生动手操作,折三角形再进行比较,由一般到特殊再到一般的过程,教师借助多媒体课件演示,使学生充分体会到三边对应相等的两个三角形是全等的。教师引导得出结论:三边对应相等的两个三角形全等。(简记为“边边边”或“SSS” )【设计意图】:利用多媒体将满足条件的两个三角形动画演示叠放在一起,可以更有力,更直观的验证基本事实的成立。(三)学以致用 强化新知通过例题讲解,引导学生学会生活中不可直接测量的事物,可采用三角形全等原理来解决问题。求证:ZiABDgzACD证明:.D是BC的中点,:.BD=CD/在4ABD与4ACD中Br
8、AB=AC BD=CD (已证)AD=AD (公共边)ABDAC (SSS让学生先独立思考,然后在教师的引导下,分析题意生口述推理过程,教师板演推理过程。【设计意图】:让学生明确其作法的依据是基本事实,/A4D C、找出已知条件和求证的结论,学强化对基本事实的理解ABC是一个钢架,AB=AC, AD是连接A与BC中点D的支架此环节先由学生试着板演过程,然后再由教师给出解题步骤。例2做一做:回顾“做一个角等于已知角”的方法,并说说作法的依据我们知道全等三角形的对应角相等。把已知角看成三角形的一个内角,那么我们只需要作一个三角形与这个三角形全等,则新三角形中已知角的对应角就是我们求作的角。这是对“
9、边边边”的判定和全等三角形的性质再实践。【设计意图】:复习尺规作图,让学生明确其作法的依据是基本0A事实,强化对基本事实的(四)巩固练习深化拓展1 .已知:如图,AB=DB, AC=DC.求证:4ABC DBC2 .已知:如图,AB=DF, AC=DE,BF=CE.求证:NA二 z3 .已知:如图,AB=CD, AD=CB.求证:AB/CD.学生独立完成,并展示其成果,全班交流证明过程,令大家共同订正,如有问题,可以小组内讨论解决。【设计意图】:学生独立解决问题,并利用多媒体展示书写过程,强调解题格式,此环节通【设计意图】:利用多媒体将满足条件的两个三角形动画演示叠放在一起,可以更有力,更直观
10、的验证基本事实的成立。(三)学以致用 强化新知通过例题讲解,引导学生学会生活中不可直接测量的事物,可采用三角形全等原理来解决问题。求证:ZiABDgzACD证明:.D是BC的中点,:.BD=CD/在4ABD与4ACD中Br AB=AC BD=CD (已证)AD=AD (公共边)ABDAC (SSS让学生先独立思考,然后在教师的引导下,分析题意生口述推理过程,教师板演推理过程。【设计意图】:让学生明确其作法的依据是基本事实,/A4D C、找出已知条件和求证的结论,学强化对基本事实的理解ABC是一个钢架,AB=AC, AD是连接A与BC中点D的支架此环节先由学生试着板演过程,然后再由教师给出解题步
11、骤。例2做一做:回顾“做一个角等于已知角”的方法,并说说作法的依据我们知道全等三角形的对应角相等。把已知角看成三角形的一个内角,那么我们只需要作一个三角形与这个三角形全等,则新三角形中已知角的对应角就是我们求作的角。这是对“边边边”的判定和全等三角形的性质再实践。【设计意图】:复习尺规作图,让学生明确其作法的依据是基本0A事实,强化对基本事实的(四)巩固练习深化拓展1 .已知:如图,AB=DB, AC=DC.求证:4ABC DBC2 .已知:如图,AB=DF, AC=DE,BF=CE.求证:NA二 z3 .已知:如图,AB=CD, AD=CB.求证:AB/CD.学生独立完成,并展示其成果,全班交流证明过程,令大家共同订正,如有问题,可以小组内讨论解决。【设计意图】:学生独立解决问题,并利用多媒体展示书写过程,强调解题格式,此环节通