《第二章解析函数.docx》由会员分享,可在线阅读,更多相关《第二章解析函数.docx(7页珍藏版)》请在第一文库网上搜索。
1、第二章解析函数1 .用导数定义,求下列函数的导数: /(x) = z Re Z.解:因lim/(z + Az)-/(z) = lim Az-0(z + Az) Re(z + Az) -zRezAzAzlimAz-0z Re Az + Az Re 2 + Az Re AzAz /nn A ReAz、=hm(Rez + ReAz + z)Az-0Azlim(Rez + zAztORe AzAz)=lim(Rez + zAvtOAy-()AxAx + zAy当z wo时,上述极限不存在,故导数不存在;当z = O时,上述极限为0,故导数为0.2 .下列函数在何处可导?何处不可导?何处解析?何处不解析
2、?1 1) f(z) = z-z2.解:f(z) = Z Z2 = Z Z Z =| z |2 z= (x2 + y2)(x + iy)= x(x2 + y2) + iy(x2 + y2),这里 w(x, y) = x(x2 + y2), v(x, y) = y(x2 +).ux = x2 + y2 + 2x2, vv = x2 + y2 + 2y2,y = 2xy,匕=2xy.要 = Uy,%, =-vx,当且当x=y = 0,而s%,匕,4均连续,故f(z) = zz2.仅在z = 0处可导,处处不解析.2 2) f(z) = x3 - 3xy2 +i(3x2y- y3).解:这里 w(x
3、, y) = x3-3xy2,v(x, y) = 3x2y- yux = 3x2 -3y2,4 = -6 孙匕=6孙 vy = 3x2 - 3)2,四个偏导数均连续且 = 5人=-匕处处成立,故/(z)在整个复平面上处处可导,也处处解析.3 .确定下列函数的解析区域和奇点,并求出导数.(1)空至少有一不为零).cz + d外在复平面上处处解析,z =C-色为奇点,c解:当 c W 0 时,/ (z) = z + 除 z =cz + dr(z)=(gycz + d(az + b)cz + d) (cz + d)az + b)(CZ + 4)2a(cz + d) c(az + h) ad- ch(
4、cz + d)?(cz + d)2当c=o时,显然有a。,故,(z)二色也在复平面上处处解析,且r(z)=dd4 .若函数f(z)在区域。内解析,并满足下列条件之一,试证/(z)必为常数.(1) “Z)在区域。内解析; V = w2;(3) arg/(z)在D内为常数;(4) Q+Z?u = c(4,b,c为不全为零的实常数).证(1)因为/(z)在。中解析,所以满足C-R条件du _ dv du _ dvdx ,3x,乂而 =-4也在。中解析,也满足C-R条件du 3(-u) du 5(-v)dx dy,dy dx从而应有2=2=变= = 0恒成立,故在。中为常数,/(z)为常数.dx dy
5、 dx dy(2)因/在。中解析且有/(Z)= + i2,由 JR条件,有c bu2u ,Sy_ du=-2udx则可推出粤=a = o,即 =C(常数).故/(z)必为D中常数.dx dyd(v/u)d(y! u) 设/(z)=+ ,由条件知arctan = C,从而U法 二0 办 二o1 + 3/)2 l + (u/)2计算得2z5v、/ 2uv)l tra、毡=0,% +2z5v du x/ 9一uv)l tr匕内一=。,-+ u-化简,利用C-R条件得du du 八uv = 0,dy dxdu du 八uv = 0.dx dy所以电=0=0,同理型= =0,即在。中为常数,故z)在。中
6、为常dx dydx dy数.(4)法一:设。0,则 =求导得du _ b dv du _ b dv1 . 1 , 1 - ,dx a dx dy a dy由C-R条件du _b du dv _b dvdx a dy dx a dy故,v必为常数,即/(z)在D中为常数.设。=0,。0,0则加=c,知-为常数,又由C-R条件知也必为常数,所以/(z)在。中为常数.法二:等式两边对X,),求偏导得:au +/?v = 0x由C R条件,我们有auy + bvy = 0(a -bi b aaur -bux. =0,八,即bu, +au、. =0GJ而。2+/W0,故=、=0,从而为常数,即有/d)在
7、。中为常数.(5) /在区域。内解析,试证:弓+副/ir证:设 /(z) = +池 I /(z)|2= W2 + V2,二”一畔,)/=(约+(沙.ox dyox oy而52 52? a2 9 9 a2 9 9(+ v)l/U)二0( + v-) + (w- + v-)Sr 廿drdy_ (、) d2u z6vx7 62v fHu、, d2u zSvx9 32M=2 ()- +w + ()-+ v+ ()- + -Y + ()- + v Ldx Sc dx 3厂 dy dy dy dy J乂/(Z)解析,则实部及虚部U均为调和函数,故二变+坐“=白+二=0.忒 dy1dx2 dy2(Jy +
8、2)(z)=4(空)2 + (学)2) = 4 I f(z) I2.ox dyox dy6.由下列条件求解解析函数/(z) = + iv. =(X _),)(工2 + 4肛 + J2);解:因上萨标*所3儿所以v = j (3x2 + 6xy-3y2 )dy=3x2y + 3xy2 -y3 +(p(x,乂 = 6孙 + 3y2 + “(x),而包=3x2 - 6盯一,所以(px) = -3x2,则dxdx夕(%)=一尢3 + (?.故f(z) = u + iv= (x-y)(x2 + 4xy + y2) + i(3x2y + 32 -y3-x3 + C)= (l-z)x2 (x + z-/(l
9、-z)(x + iy) - 2x2y( + i) - 2xy2(1-i) + Ci=z(l -z)(x2 - y2)- 2xyi - zz(l - /) + Ci= (l-z)z(x2 -y2- 2xyi) + Ci= (l-z)z3 + Cz(2) v = 2xy + 3x;解:因 = 2y + 3, = 2乂由/(z)解析,有dxoydu dv -=2x,& dy= J 2xdx = x2 + My).又= 一 2y - 3,而=(y),所以“(y) = -2-3,则 My) = -y1 - 3y + C.dy dxdy故 /(z) = x1 - y2 - 3yC + i(2xy + 3x
10、). = 2(Dy(2) = i;解:因半=2必半=2(x-l),由/(z)的解析性,有二=-纵=-2(1),dx dydx dyv =卜2(冗_ 1)心=-(x-1)2 + 0(y),又?=2乂 而? = (y),所以“(y) = 2y,。(),) = / +C,则dy ox dyv = -(x-l)2 + y2 +C,故/(z) = 2(x-l)y + z(-(x -l)2 + y2 + C),由 /(2) = -i 得 /(2) = z(-l + C) = T;推出 C = ().即/(z) = 2(x-l)y + z(y2 -x2 +2x-l)= z(-z2+2z-1) = -z(z-
11、1)2.7 .设u = siny,求p的值使为调和函数,并求出解析函数f(z) = u + iv.解:要使u(x,y)为调和函数,则有% =0.即p2el)x sin y - epx sin y = 0,所以P = l时,u为调和函数,要使/解析,则有= %、=-匕.u(x, y)二 J必= Jepx cos ydx = epx cos y + My),4V = -epx sin y + “(y) = -pepx sin y.P所以O(y) = (p)e sin y, My) = (p)epx cos y + C.即(x, y) = pepx cos y + C,故/(z)ex (cos y
12、+ isin y) + C = e,+ C,-ex(cosy-zsin y) + C = -ez +C,p = -l.8 .试解方程:(1) 血;解: ez = 1 + V3z = 2(cos + /sin) = 2e 333k = 0,l,2.71z = ln2 + i(2jbr + ), Z = 0,l,2.7iiZ-T,解:z = e冗.71.= cos + /sin = z9.求下列各式的值。(1) cos z;(2) L(3 +旬;解:(一3 + 4i) = ln5 + iArg(3 + 4i)4=ln 5 + iQk 兀 + 4一 arctan ).(一尸;解:(1 - o1+,(1+W)(1+i) ln&+i(-+2&;r)4ln&+工一2火;r+i ln0+2A不一工44cos(ln V2 - -) + zsin(ln 41-)44(4) 33t;解:q3-j _ (3-/)In3 _ (3-iXln3+2k;n)=e(3-i)E3 既=/n3+2E .句n3=27e,(cos In 3 - isin In 3).