《工程训练综合能力竞赛 无碳小车设计报告.docx》由会员分享,可在线阅读,更多相关《工程训练综合能力竞赛 无碳小车设计报告.docx(26页珍藏版)》请在第一文库网上搜索。
1、2020年*工程训练综合能力竞赛无碳小车设计报告参赛者:指导老师:2020/10/151、设计概述“无碳小车”是将重力势能转换为机械能,使小车实现行走及转向功能的装置。小车由能量转换机构、传动机构、转向机构和车身构成,首先通过能量转换机构获得动力来驱动后轮转动,继而通过传动机构将运动传给转向机构使转向轮,利用横纵向直线运动复合运动使转向轮呈正弦波形周期性摆动,从而避开设置在波形内固有间距的障碍物。具体设计为小车以1kg重物块下落500mm产生的重力势能作为动力,通过线绳带动齿轮轴等传动机构,单轮驱动;通过正弦机构带动前轮周期性摆动实现转向。无碳小车结构设计总装图如图所示。2、设计思路和方案小车
2、的设计分为三个主要阶段:功能分析、制造加工调试2.1功能分析对小车功能要求进行分析,寻找功能元解,将小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块。对每一个模块进行多方案设计,综合对比选择最优的方案组合。2.2参数分析与个性化设计利用Solidworks软件进行小车的实体建模、部分运动仿真。对方案建立数学模型进行理论分析,使用MATLAB软件分别进行能耗规律分析、运动学分析、动力学分析、灵敏度分析,得出小车的具体参数和运动规律。功能分析参数分析与个性化设计制造加工调试2. 3机械总功能分解及功能元解表1.势能转向小车形态学矩阵功能元功能元解12345A势能转化重物一锥台
3、绕线轮机构重物一飞轮机构B行走机构后双轮同步驱动单轮驱动C前轮摆动曲柄摇杆机构正弦机构(曲柄移动导杆机构RSSR空间四杆机构凸轮推杆机构圆轮导杆机构D中间传动齿轮机构皮带轮机构E微调结构由以上A、B、C、D四机构的最终组合方案而另行确定2.4机构选型基本原则满足工艺动作和运动要求。结构最简单,传动链最短。原动机的选择有利于简化结构和改善运动质量。机构有尽可能好的动力性能。机器操纵方便、调整容易、安全耐用。加工制造方便,经济成本低。具有较高的生产效率与机械效率。2.5转向机构分析目前,能够实现无碳小车车轮转向控制的机构主要有曲柄摇杆机构、正弦机构(曲柄移动导杆机构)、RSSR空间四杆机构凸轮推杆
4、机构和圆轮导杆机构。这5种机构在结构和功能上有各自的特点。转向机构是本小车设计的关键部分,直接决定着小车的功能。转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。能够将旋转运动转化为满足要求的来回摆动。同样也2.5.1曲柄摇杆机构优点:连杆机构中的运动副为低副,其运动副元素为面接触,压力较小,易润滑,损耗能量少,且运动副一般是几何封闭,对保证小车行进的可靠性有利。缺点:由于连杆机构的运动必须经过中间构件进行传递,因而构件数目多,传动路线长,若加工不能保证适当精度,易产生较大的误差积累,也使机械效率降低。无急回曲柄摇杆机构是平面机构,要求曲柄处
5、于前轮支架轴线的垂直面,要多一级转换机构。该机构对于摇杆与前轮角度的精度要求较高,装配难度较大,而且曲柄长度不具备调节功能,会导致摇杆摆角不对称。2.5.2以正弦机构为转向机构正弦机构摆角规律正弦机构是目前无碳小车设计过程中常选用的转向机构之一,图为其机构简图,其曲柄可在小范围内调节,同样可控制无碳小车的前轮摆角。图2.1正弦机构有2个销槽副、一个移动副,曲柄具备调节功能,可以在小范围内调节小车的轨迹,调节性能较好2.5.3RSSR空间四杆机构RSSR空间四杆机构有2个球副,机构简单,传动效率较高,但摇杆与前轮的角度难以控制,样具有安装精度高的特点2.5.4凸轮推杆机构优点:适当地设计出凸轮的
6、轮廓曲线后就可以使推杆精准地实现所需的运动规律,而且响应快速缺点:凸轮廓线与推杆之间为点、线接触,易磨损;凸轮精准制造较困难;需使用额外机构,利用弹簧力与使凸轮与推杆保持接触,2.5.5圆轮导杆机构此转向机构主要由转向杆、转向轮、短杆构成。转向盘与从动轴齿轮喷合。短杆一端通过销钉与转向杆连接在一起,可自由转动。另一端与转向轮的轴固定于小车的中心轴线处。当转向盘匀速转动,转向杆会周期性左右摆动,然后通过短杆的传动,可以实现转向轮的转向。从而控制小车绕开障碍物的整体运行。优点:运动副自身几何封闭,不需要额外结构使运动副保持接触,易润滑,损耗能量较小,结构简单,轮廓加工制造容易。缺点:摆动活动范围小
7、,死点多。正弦机构可以实现正反转角的完全对称,从功能上分析是作为无碳小车转向机构的最佳方案;2.6传动机构分析传动概述:传动机构的功能是把动力和运动传递到转向机构和驱动轮上。要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等。2.6.1齿轮传动机构优点:齿轮具有效率高、适用的载荷和速率范围大、工作可靠、传动比稳定。缺点:但价格较高,且传动距离比较短2.6.2皮带轮传动机构优点:具有结构简单、可以远距离传动、价格低廉、缓冲吸震无噪音等特点缺点:其效率及传动精度并不高。2.7组合方案择优并确定辅助、控制机构在上述主要功能解组合方案确定后,接下来就是确定辅
8、助、控制功能的机构。2.7.1辅助机构:车架为了降低车的重心,增加稳定性,在转弯时不易翻车,采用下沉式车架。2.7.2微调机构完整的机器包括:原动机构、传动机构、执行机构、控制机构。微调机构属于控制机构,由于加工误差和装配误差,小车的行进轨迹可能会发生偏移,必须加上微调机构,对误差进行修正。综合各方面的因素,选用下图所示机构,使小车实现微调,通过拧紧螺母使圆柱相对圆心的距离固定,使此连接转向机构的小圆柱改变转速,从而改变前轮的完成一次转向时间。达到改变小车运动轨迹的目的。图2.2圆轮微调机构2.8设计方案确定运动轨迹:小车运动轨迹曲线为Y=-Acos玄,出发点在波峰处。由于加工装调等方面均存在
9、误差实际上小车轨迹的中心线是一条弯曲的曲线,对此,可以通过调整小车出发时车身和前轮的偏角来控制轨迹使小车轨迹在允许的范围内进行补偿,获得最好成绩。转向机构:向机构采用正弦机构带动前轮周期性往复摆动来实现。传动机构:采用一级齿轮传动,通过绕线轮带动驱动轮实现单轮驱动,采用锥形的绕线螺纹轴,既能够在启动阶段提供足够大的启动转矩,又可以在稳定后控制车速稳定轨迹;车身采用下沉式底板保证了小车重心低不易翻车。原动机构:采用单轮子驱动机构,即右边轮子为驱动轮,左边轮子为从动轮。轨迹调整方法:影响小车轨迹形换的因素有很多,我们要选择方便调节的结构来对小车的轨迹实现改变。在这里,我们采用同时调节曲柄工作长度(
10、圆盘小圆柱到圆盘中心距)和更换轮子大小的方式来实现调节。当然理论分析结果与实际条件的结果是有差异的,这就需要我们再实际条件下不断的调试来获得可靠的数据。出发点的确定:小车的初始位置的确定取决于三个参数,分别为小车出发点距离障碍物连线的距离,小车前轮的初始摆角,小车车身整体相对指定参照物的方向与位置,通过参照物标定前轮初始转角,尺子标定起点距障碍物连线距离。3、设计结果3.1运动分析3.1.1运动循环图重物相对车身沿铅垂方向位移相对车身静止相对地面静止后双轮相对车身加速转动相对车身减速转动相对地面静止前轮相对车身往复摆动并且转动相对地面静止时间轴:图3.1机械运动循环图3.1.2机构运动简图与自
11、由度分析3x2x1图3.2小车简图自由度计算:据平面机构自由度公式F=3一(22+Ph-)-F,其中指活动构件数,5表示低副数目,与表示高副数目,P表示虚约束数目,尸表示局部自由度数目,而据本车机构运动简图可知,=5,0=6,,0=2,p=0,尸=0,代入计算可得整个机构自由度为1。3.2运动学分析模型符号说明:绕线轴与驱动轴传动比i后轮半径R后轮与车子中心线的距离a曲柄工作长度r推杆与车子中心线的距离b前轮与后轮的距离d驱动da= a)*dtI = rcosads = vdt(3-1)(3-2)(3-3)小车任意时刻绕绳轮的角速率则曲炳转角推杆推程小车移动路程转向当曲柄转角为。时,摇杆转角(
12、前轮转角)为Q,则tan。=r*cosa(3-4)解上述方程式可得。和a的关系式0= /(a)(3-5)小车行走轨迹只有一个后轮做驱动轮时,当前轮转角为夕时,后轮转弯的曲率半径=+0.075x(l/b)/abs (1/b) )(3-6)tan。小车行走路程为ds时,小车整体转角为d/3 = (3-7)P当小车转角为万时,后轮轨迹有dx = -ds * cos/3(3-8)dy= ds sin(3-9)(4)小车其他轮轨迹当驱动轮为左后轮A时,此时以A轮为参考,则在小车坐标系中B坐标为(2*a,0)C坐标为(a,d)在地面参考系中x,=-2*q*cos.(3-10)%=打-2*q*sin,xr=
13、x-a*cosS-d*sin.(3-11)yc=ya4*sin/+d*cosQ(5)小车参数设定通过设定合理的参数,运用matlab辅助仿真,可得到小车各轮子的轨迹。在上述列出的参数中,可通过微调机构调节的参数为曲柄长度r,通过换装零件调节的参数为轮子直径D(半径R)o调节参数对小车主动轮轨迹的影响如下表所示。曲柄半径r/m后轮直径D/mm半个周期Y方向位移/mm转弯跨度/m0.02418()7000.430.022008000.450.0162159000.420.01323010000.40.01125011000.40.0127012000.4250.0129013000.42表3.1运
14、用matlab分析软件,假设绳轮角速率已知(在传动比确定的条件,角速率不影响小车运动轨迹形状),设定表3.1中各参数的值,绘制小车主动轮的理想轨迹图象,直观反映上述表格内容,如图3.3所示:0.30.20.10-0.45-0.35-0.25-0.15X方向位移/m-0.0598 7 6 5 4 o o o o o OE、於3叵图3.3小车主动轮枕迹形状变化(红色字体表示Y方向位移)理想状态下小车主动轮运动轨迹如上图所示。但在实际运动过程中,由于小车受到各种因素的限制,导致实际运动轨迹与理想运动分析轨迹存在偏差。而且,表中数据表明,要达到各种轨迹形状要求,必须同时调节曲柄工作长度和更换小车车轮,用于更换的轮子就有七套。综合以上两个因素,我们采用插值方式将轮子确定为190m队220mm、250mm.280mmpq个尺寸。由此可以得出结论:要得到可靠的与轨迹对应的r值和轮子大小,必须在真实条件下调试装配好的小车。(6)小车运动轨迹根据4中其他轮子与驱动轮的关系