《供应链配送管理培训.docx》由会员分享,可在线阅读,更多相关《供应链配送管理培训.docx(8页珍藏版)》请在第一文库网上搜索。
1、供应链配送管理培训NOTE03:配送管理本文由清华大学经济管理学院刘丽文教授完成,仅用于教学参考。2001年清华大学经济管理学院版权所有。未经许可,禁止复制、存储、引用或者以其它任何形式传播。供应链上的配送环节是指产品制造完成之后,从制造商、批发商、经销商、零售直至到达最终顾客手中的一系列环节。很多产品出厂后,特别是消费品,都需要通过这一系列过程才能到达最终顾客,即产品的使用者手中。配送管理与物料采购管理相比,其重要意义在于,由于成品的附加值远远高于零部件的附加值,该环节任何冗余的库存、时间上的延误、制造商与经销商之间的不友好关系都会给链上的各个成员带来更高额的成本。该环节的链条越长,该环节关
2、于产品在最终市场上的竞争能力的影响越大。著名的管理学家PF德鲁克曾指出:“配送、流通是工业的,黑色地带,是能够大量节约成本的地方J配送管理中需要考虑的几个重要问题是:如何设定合理的流通配送环节?如何与整个流通配送环节中的各个节点上的企业保持合作伙伴关系?如何合理设定各个环节的库存,与如何防止牛鞭效应(BUuWhiPEffeCt)。本文讨论其中的一些重要概念与基本策略。很多企业已经成功地运用了这些概念与策略,但是,务必指出,这些概念与策略的运用务必与具体的供应链结构及其特点相结合,进行具体的分析。一、流通配送环节的设定集中型与分散性配送系统考虑某公司的配送系统。该公司制造与分销配送电子设备,其有
3、两大配送中心,位于相隔一定距离的两地,分别供应其周围的两个市场。两个市场的顾客(要紧是零售商)直接从各自的配送中心得到产品,而两个配送中心则都由同一个制造基地供货(见图1)。从制造基地到两个配送中心的供货周期分别为一周,假定制造基地有足够的生产能力满足配送中心的任何要货要求。现在的配送管理方针要求有97%的顾客服务水平,即每个配送中心务必保持一定的库存水平,从而对顾客的缺货率不超过3%。无法满足的顾客需求将被竞争对手夺走,而不可能延迟供货。该公司大约有500种不一致规格型号的产品,所服务的零售商有一万家左右。现有的配送系统是七年前设计的,公司现在想考虑一种新的配送策略:将两个配送中心合二为一,
4、用单一的配送中心服务全部市场(见图2)。我们把图1所示的系统称这两种系统各有什么特点财很显然,与集中型系名大好处是能,集中型系统平,或者在;它能够使小的顾客,MTTTtJT竣件下集中型系统之因此有这种条绻波动有可能是很大的,但总需求量E-、1运配送中心I配送中心顾所受殷盼或客集中型系统。E9来K中心动相与乂生系统的一个最本低。但是,7顾页客服务水客顾求是随机的,客一个平均值。在集中型系统的情况下,某一个顾客高于平均值的需求与卜顾客低于平均值的需求一累加,就有可能产生一种互补效应,从而总需求量仍然接近于平均值。一个配送中心服务的顾田粉杷夕翎1砧比含二*杷口口日但是,假如确实使图2集中型配送系统,
5、水平的话,系统的总库存量毕竟能降Id夕,;11Rd1J胆QryI/叩:d7D来做进一步的分析。但请读者记住,在实际的运作系统中,是应该对全部产品进行分析的。假定A、B两种产品从制造基地的订货费用都是每次60元,库存持有费用为单位产品每周0.27元。在现有系统之下,产品从配送中心到顾客的运输成本为平均每一产品1.05元。按照估计,在集中型系统的情况下,运输费用将增至1.10元。为便于分析,假定两种系统之下的供货时间差别不大。表1与表2分别提供了A、B两种产品的历史数据,即过去8周以来每个市场每周分别对两种产品的需求。从表中能够看出,对产品B的需求比对A的需求要小得多。表3还提供了两种产品周需求的
6、平均值与标准偏差,与需求的变异系数(标准偏差与平均需求之比值)。表1过去8周以来每个市场对产品A的需求周12345678市场I3345373855301858市场II46354H4026481855合计79807878817836113表2过去8周以来每个市场对产品B的需求周12345678市场I02300130市场II24003100合计26303230表3两种产品周需求的统计数据产品平均需求标准偏差变异系数市场IA39.313.20.34市场IB1.1251.361.21市场IIA38.612.00.31市场IIB1.251.581.26合计A77.920.710.27合计B2.3751.
7、90.81需要指出的是,务必注意标准偏差与变异系数之间的区别。尽管二者都用来反映顾客需求的变动性,但是标准偏差表示顾客需求的绝对变动性,而变异系数表示相关于平均需求的变动性。比如,在上述所分析的两种产品中,我们能够看到,产品A的标准偏差比产品B要大得多,而产品B的变异系数比A要大得多。这一特点在最终分析中将起到重要作用。此外,还应注意到,关于每种产品来说,集中型系统所面临的平均需求等于分散型系统下两个配送中心各自的平均需求之与。但是,集中型系统的需求变动性(不管是用标准偏差还是用变异系数来衡量)比分散型系统下两个配送中心的相应数据之与小得多。这种特点将对供应链上游的生产系统产生重要影响。参照库
8、存管理的有关方法,进行计算,可将这种影响概括为如表4o表94两种产品的库存水平产品周平均需求安全库存每次订货量最大库存分市场IA39.325.08132158散市场IB1.1252.582526型市场IIA38.622.8131154市场B1.2532427集中型A77.939.35186226集中型B2.3753.613337从该表可知,在分散型系统之下,产品A在配送中心的平均库存为88个(安全库存+Q2),在配送中心I的平均库存为91个。而在集中型系统之下,平均库存为132个。这样,假如该公司使用集中型系统,则产品A的平均库存能减少26%0同样,在分散型系统之下,产品B在两个配送中心的平均
9、库存分别为15个,而在集中型系统之下,平均库存为20个,减少33%。以上事例说明了供应链管理中的一个重要概念:RiskPoo1ing,即风险汲取池”。这个概念是说,多个地点需求总与的变动性小于各个地点需求的变动性。由于各个地点的需求是随机变动的,一个地点的需求高峰与另一个地点的需求低谷一累加,就有可能使总需求的变动性减小。这样,需求变动性的减小可使安全库存减少,从而降低平均库存水平。比如,在上述的集中型系统中,其需求的变动性不管是用标准偏差还是用变异系数来衡量,都减少了。从这一事例中,我们能够概括出“风险汲取池”的三个要点:(1)集中型库存可同时减少系统中的安全库存与平均库存。由于在一个集中型
10、系统中,假如原先两个分散市场的需求一个高、一个低,集中型系统能够很容易地将原先准备供应给一个市场的产品转而供应给另一个市场。而这一点在分散型系统的情况下很难作到,或者者说需要付出高额成本才能作到。(2)需求的变异系数越大,从集中型系统中的获益越大。也就是说,“风险汲取”的程度越高。这是由于,平均库存实际上由两部分构成:一部分对应于需求的平均值(即Q),另一部分对应于需求的变动(即安全库存)。由于平均库存的降低要紧是通过降低安全库存来实现的,因此变异系数越大,安全库存对整个库存减少的影响越大。(3)“风险汲取”的效应还取决于不一致市场需求变化模式的有关性。假如一个市场的需求高于平均值另一个市场也
11、同样,或者一个市场的需求低于平ProductionandOperationsManagement:ManufacturingandServices(8e),RichardB.Chase,Nicho1asJ.Aqui1ano,F.RobertJacobs,Mcgraw-Hi11,1998(英文影印版,机械工业出版社)OperationsManagement,JayHeizer,BaITyRender.Prenticeha11,2001(英文影印版,清华大学出版社)均值另一个市场也同样,则这两个市场有一种正有关的关系。在正有关的情况下,“风险汲取”的效应将减弱,反之则增强。二、牛鞭效应1、什么是牛
12、鞭效应配送管理中另一个重要问题是防止“牛鞭效应”(BUnWhiPeffect)O所谓牛鞭效应,是指订货量的波动在从零售商到批发商、批发商到制造商,直至制造商又到零部件供应商的过程中,不断地增大。这种效应曲解了供应链中的需求信息,使各个节点对需求都作出了不一致估计,其结果,只好在供应链上层层增大库存,以缓解放大的需求波动。这种做法无疑导致了整个供应链上拥有庞大的库存,从而导致了整个供应链的缺失。很多企业在其供应链中都发现了牛鞭效应。比如,P&G公司发现,它的一个要紧产品一一婴儿纸尿布的生产量的计划波动很大,从而向供应商订购的原材料有相当大的波动。但是沿供应链往下再研究筌售点的销售量,却发现波动很
13、小,即市场上对纸尿布的需求实际上是相对稳固的。这样,尽管对最终产品的需求是稳固的,但是供应链上游订单的波动却很大,且越往上越大。这样给制造商与原材料供应商满足订货要求带来了很大困难,同时也增加了成本。又如,HP公司在其打印机供应链中也发现,在沿着从零售商到批发商、从批发商到HP的打印机制造部门,直至其集成电路采购部门的整个供应链中,订单的波动在不断放大。这使得HP按时履行订单合同的难度大为提高,并带来了成本的增加。此外,在对服装、食品、甚至汽车工业的研究中,也发现了类似现象。2、牛鞭效应的原因分析引起牛鞭效应的原因有多种,这些原因往往与供应链的构造方式与各节点之间的信息沟通方式有关。其中一些要
14、紧原因如下。(1)多级需求预测。大部分分销配送系统的结构是多级的。供应链上的每个企业为了安排生产日程、采购计划、运输计划等,都要进行需求预测,而预测的基础则是其下游直接客户的订货数据。传统做法是供应链分销配送环节的每一节点将其自身需求的预测结果通过整理以订单的形式向上一级报告。上一级将其下游所有直接节点的订单进行汇总与整理,然后再向其上一级发出订单。对产品需求的预测信息就以订单的形式一级一级地向供应链上游流淌。然而,由于各个节点出于自身利益考虑,会根据自己既定的库存补充方针、顾客服务水平等对其下游企业需求预测数据进行人为的整理与“修改”,再形成自己向上一级的订单,导致对产品需求信息的波动被逐步放大,从而导致了供应链中牛鞭效应的发生。比如,一个由当地经销商、地区销售分公司,销售总公司所构成的三级分销配送环节,每一个环节均根据其直接下游环节最新的订货记录(关于当地经销商来说,则根据当月的销售数量)保持能够供应两周的库存量,以此计算向上游环节的订货量。当市场需求为稳固的每周20个时,三级流通环节的期初库存、期末库存与订货数量都相对稳固(见表5)。但是,假设市场需求变化了5%,即从每周需求20个变为每周19个,如表6所示,其上游环节就会引起一层比一层更大的波动。这种波动用图来表示,如图3所示。表5多级分销配送环节的运行(1)项目产品数量当地经销商期初库存40每周销售量20期末库