大规模储能技术在电力系统中的应用前景分析.doc

上传人:w** 文档编号:222164 上传时间:2023-06-07 格式:DOC 页数:18 大小:290KB
下载 相关 举报
大规模储能技术在电力系统中的应用前景分析.doc_第1页
第1页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第2页
第2页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第3页
第3页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第4页
第4页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第5页
第5页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第6页
第6页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第7页
第7页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第8页
第8页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第9页
第9页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第10页
第10页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第11页
第11页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第12页
第12页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第13页
第13页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第14页
第14页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第15页
第15页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第16页
第16页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第17页
第17页 / 共18页
大规模储能技术在电力系统中的应用前景分析.doc_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
资源描述

《大规模储能技术在电力系统中的应用前景分析.doc》由会员分享,可在线阅读,更多相关《大规模储能技术在电力系统中的应用前景分析.doc(18页珍藏版)》请在第一文库网上搜索。

1、大规模储能技术在电力系统中的应用前景分析摘要:分析了储能技术在电力系统发展和变革中的地位和作用,对各种类型储能技术的基本原理、技术特点、发展现状、存在的主要问题及需要突破的关键技术等进行了较全面的综述,提出了针对规模化应用储能技术的评价指标。在此基础上,分析了不同储能技术的发展和应用前景,并预测了其发展的路线图。1储能技术的定位和作用传统能源的日益匮乏和环境的日趋恶化,极大地促进了新能源的发展,其发电规模也快速攀升。以传统化石能源为基础的火电等常规能源通常按照用电需求进行发电、输电、配电、用电的调度;而以风能、太阳能为基础的新能源发电取决于自然资源条件,具有波动性和间歇性,其调节控制困难,大规

2、模并网运行会给电网的安全稳定运行带来显著影响。储能技术的应用可在很大程度上解决新能源发电的随机性和波动性问题,使间歇性的、低密度的可再生清洁能源得以广泛、有效地利用,并且逐步成为经济上有竞争力的能源。传统电网的运行时刻处于发电与负荷之间的动态平衡状态,也就是通常所说的“即发即用暠状态。因此,电网的规划、运行和控制等都基于“供需平衡暠的原则进行,即所发出的电力必须即时传输,用电和发电也必须实时平衡。这种规划和建设思路随着经济和社会的发展越来越显现出缺陷和不足,电网的调度、控制、管理也因此变得日益困难和复杂。由于电网中的高峰负荷不断增加,电网公司必须不断投资输配电设备以满足尖峰负荷容量的需求,导致

3、系统的整体负荷率偏低,结果使电力资产的综合利用率很低。为解决这些问题,传统电网急需进一步升级甚至变革。先进高效的大规模储能技术为传统电网的升级改造乃至变革提供了全新的思路和有效的技术手段。在大容量、高性能、规模化储能技术应用之后,电力将成为可以储存的商品,这将给电力系统运行所必须遵行的发电、输电、配电、用电同时完成的概念以及基于这一概念的运行管理模式带来根本性变化。储能技术把发电与用电从时间和空间上分隔开来,发出的电力不再需要即时传输,用电和发电也不再需要实时平衡,这将促进电网的结构形态、规划设计、调度管理、运行控制以及使用方式等发生根本性变革。储能技术的应用将贯穿于电力系统发电、输电、配电、

4、用电的各个环节,可以缓解高峰负荷供电需求,提高现有电网设备的利用率和电网的运行效率;可以有效应对电网故障的发生,可以提高电能质量和用电效率,满足经济社会发展对优质、安全、可靠供电和高效用电的要求;储能系统的规模化应用还将有效延缓和减少电源和电网建设,提高电网的整体资产利用率,彻底改变现有电力系统的建设模式,促进其从外延扩张型向内涵增效型的转变。2储能技术国内外发展现状2.1储能技术的分类根据能量类型的不同,储能技术基本可分为四大类别,包括基础燃料的存储(如煤、石油、天然气等)、中级燃料的存储(如氢气、煤气、太阳能燃料等)、电能的存储和后消费能量的存储(相变储能等)。本文重点分析电能存储技术,按

5、照所存储能量的形式,可大致分为物理储能和化学储能,物理储能又可以分为机械储能和电磁场储能,如图1所示。由于储能技术具有极高的战略地位,世界各国一直都在不断支持储能技术的研究和应用。日本NEDO(New Energy and Industrial Technology Development Organization)于2009年针对各种电池储能技术进行了详细的发展路线规划,其中尤其关注锂离子电池、钠硫电池以及新型电池等技术的发展;美国能源部也于2010年底围绕各种新型与先进电池的发展与应用发布了相关技术报告,未来20年将重点关注超级铅酸与先进铅酸电池、锂离子电池、硫基电池、液流电池、功率型储能

6、电池以及金属空气电池、先进压缩空气储能技术等研究方向。以下将简单介绍上述几种储能技术的基本原理、特点、发展现状、目前存在的主要问题及关键技术。2.2机械储能2.2.1抽水蓄能抽水蓄能电站通常由上水库、下水库和输水及发电系统组成,上下水库之间存在一定的落差。在电力负荷低谷时段把下水库的水抽到上水库内,以水力势能的形式蓄能;在负荷高峰时段,再从上水库放水至下水库进行发电,将水力势能转换为电能。抽水蓄能技术相对成熟,设备寿命可达3040年,功率和储能容量规模可以非常大,仅受水库库容的限制,通常在1002000MW之间。抽水蓄能在电力系统中可以起到调峰填谷、调频、调相、紧急事故备用、黑启动和为系统提供

7、备用容量等多重作用。抽水蓄能的最大局限性是受地理条件的限制,必须具有合适建造上下水库的地理条件。抽水蓄能电站的关键技术主要包括抽水蓄能电站主要参数的选择、工程地质技术问题以及抽水蓄能机组技术等。2.2.2压缩空气储能压缩空气储能系统是基于燃气轮机技术发展起来的一种能量存储系统,其工作原理是:当电力系统的用电处于低谷时,利用富余电量驱动空气压缩机,把能量以高压空气的形式存储起来;当用电负荷处于高峰时,将储气空间内的高压空气释放出来,驱动发电机发电。自1949年StalLaval提出利用地下洞穴实现压缩空气储能以来,国内外学者围绕压缩空气储能发电技术开展了大量的研究和实践工作,目前已有2座大型电站

8、分别在德国和美国投入商业运行,积累了大量成熟的运行经验。近年来,关于压缩空气储能系统的研究和开发一直非常活跃,先后出现了多种形式的压缩空气储能系统。根据压缩空气储能系统的热源不同及应用规模,可以分为:栙传统使用天然气和利用地下洞穴的大型压缩空气储能电站,单台机组规模通常在100MW级及以上;栚不使用天然气和地下洞穴的新型压缩空气储能系统,单台机组规模通常在10MW级及以下。根据压缩空气储能系统是否同其他热力循环系统耦合,可以将其分为压缩空气储能燃气轮机耦合系统、压缩空气储能燃气蒸汽联合循环耦合系统、压缩空气储能内燃机耦合系统、压缩空气储能制冷循环耦合系统等。总体来说,目前传统使用天然气并利用地

9、下洞穴的压缩空气储能技术已经比较成熟,效率可达70%,但存在对特殊地理条件和化石燃料的依赖问题。其他几种压缩空气储能技术尚处于研究、实验室样机示范发展阶段,目前的主要问题是储能效率较低、能量密度低,其关键技术主要包括压缩机、膨胀机、储气设备、储热装置等。2.2.3飞轮储能飞轮储能的基本原理是把电能转换成旋转体(飞轮)的动能进行存储。在储能阶段,通过电动机拖动飞轮,使飞轮本体加速到一定的转速,将电能转化为动能;在能量释放阶段,飞轮减速,电动机作发电机运行,将动能转化为电能。飞轮储能具有功率密度很高、能量转换效率高、使用寿命长、对环境友好等优点,缺点主要是储能能量密度低、自放电率较高。目前,中小容

10、量的飞轮储能系统已实现商品化,大容量的飞轮储能系统也已进入工业试运行阶段。飞轮储能的关键部件包括高速、高储能密度飞轮,高可靠性、长寿命、低损耗轴承,高速电机及其控制系统等。2.3电化学储能电化学储能是通过化学反应将化学能和电能进行相互转换以存储能量的技术。电池是能量转换的主要载体。电池的类型很多,其内部材料体系和电化学反应机理各异,但是,它们内部的核心结构却基本相同,都是由正极、负极、隔膜和电解质组成。电池内部电势较高的一极称为正极,电势较低的一极称为负极。在充电过程中,电池正极上的活性材料发生氧化反应,失去电子。同时,阳离子通过电解质在电场的作用下向负极移动。失去的电子沿着外电路流向负极,并

11、在负极上与负极活性材料结合,发生还原反应。电池的放电过程与充电过程正好相反。电化学储能作为电能存储方式的一个重要分支,其特点在于功率和能量可根据不同应用需求灵活配置,响应速度快,不受地理等外部条件的限制,适合大规模应用和批量化生产。但这种储能技术目前存在的主要问题是电池的使用寿命有限、成本高,这也是电化学储能技术目前需要重点突破的方向。不同的电池类型有各自的特点,这就为大规模储能应用的不同需求提供了多样化的选择,目前研究得较多的主要有锂离子电池、钠硫电池、全钒液流电池、钠/氯化镍电池、铅酸电池、镍氢电池、锂硫电池、锂空气电池等。传统的电化学电池以铅酸电池为代表,具有150多年的发展和应用历史,

12、是目前备用电源领域应用规模最大的电池类型,其技术和产业发展已非常成熟。随着电动汽车以及大规模储能产业的兴起,铅酸电池技术也有了新的发展,典型代表有铅碳电池。随着可再生能源发电的快速发展,对大规模储能技术提出了更高要求,出现了以钠硫电池和全钒液流电池为代表的针对大规模储能应用而开发的电池。钠/氯化镍电池则是在钠硫电池的基础上发展起来的。随着便携电子产品的发展,出现了镍氢电池和锂离子电池,目前这种电池的产业发展已相对成熟。随着当前电动汽车的发展,锂离子电池在材料和制造工艺上有了很大的发展。这也促进了锂离子电池技术的进步,为大规模储能应用奠定了坚实的技术基础和产业基础。此外,为满足电动汽车未来发展需

13、求而开发的锂硫电池和锂空气电池,也有可能成为未来大规模储能应用中潜在的或备选的技术。最近,美国麻省理工大学一个研究团队提出了一种新的化学储能技术,研究出液态金属电池。实验室的研究结果表明,这种电池具有成本低、寿命长、效率高、储能密度大的优点,可望满足电网能量存储的要求。这项技术目前在国际上得到了广泛关注。2.4电磁场储能2.4.1超导磁储能系统超导磁储能系统是利用超导线圈通过变流器将电网能量以电磁能的形式存储起来,需要时再通过变流器将存储的能量转换并馈送给电网或其他电力装置的储能系统。超导磁储能系统主要组成单元包括超导储能磁体、低温系统、电力电子变流系统和监控保护系统。超导磁储能系统是一种利用

14、超导体(线圈)直接存储电磁能的系统,在超导状态下超导线圈无焦耳热损耗,其电流密度比一般常规线圈高1至2个数量级,因此具有响应速度快、转换效率高(不小于95%)、功率密度高等优点,可以实现与电力系统的实时大容量能量交换和功率补偿。超导磁储能系统不仅可用于解决电网瞬间断电对用电设备的影响,而且可用于降低和消除电网的低频功率振荡,改善电网的电压和频率特性,进行功率因数的调节,实现输配电系统的动态管理和电能质量管理,提高电网应对紧急事故和稳定性的能力。超导磁储能目前存在的主要问题如下:一是目前超导材料成本仍然很高;二是用于产生超导态低温条件的冷却装置等关键设备还没有完全实现国产化;三是还存在超导磁体的

15、失超保护等关键技术问题,尚需深入研究和解决。2.4.2超级电容器储能超级电容器是近年来受到国内外研究人员广泛关注的一种新型储能元件。按照储能原理可以分为双电层电容器和法拉第准电容器两大类,其中,后者目前通常被称作电化学电容器。双电层电容器的基本原理是利用电极和电解质之间形成的界面双电层来存储电能。当电极和电解质溶液接触时,由于库伦力、分子间力或者原子间力的作用,使固液界面出现稳定的、符号相反的两层电荷,称为界面双电层。双电层电容器的储能是通过使电解质溶液进行电化学极化来实现的,因此,这种电容器工作时并没有发生电化学反应。法拉第准电容器是在电极表面或体相中的二维或准二维空间上,进行电活性物质欠电

16、位沉积,产生化学吸脱或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容器,其存储电荷不仅包括存储在双电层上的电荷,而且包括电解质溶液中离子在电极活性物质中由于氧化还原反应而存储于电极中的电荷。超级电容器具有充放电速度快、功率密度高、循环使用寿命长、环境友好、工作温度范围宽等优点。这种电池目前的主要问题是能量密度低、成本高。关键技术主要包括电极材料及电解质溶液关键材料技术、电压均衡技术等。2.5熔融盐蓄热储能熔融盐蓄热储能是利用熔融盐使用温区大、比热容高、换热性能好等特点,通过传热工质和换热器加热熔融盐将热量存储起来,需要时再通过换热器、传热工质和动力泵等设备将存储的热量取出以供使用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 行业资料 > 能源电力

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服