生物质转化技术与应用研究进展.doc

上传人:w** 文档编号:222756 上传时间:2023-06-07 格式:DOC 页数:18 大小:71KB
下载 相关 举报
生物质转化技术与应用研究进展.doc_第1页
第1页 / 共18页
生物质转化技术与应用研究进展.doc_第2页
第2页 / 共18页
生物质转化技术与应用研究进展.doc_第3页
第3页 / 共18页
生物质转化技术与应用研究进展.doc_第4页
第4页 / 共18页
生物质转化技术与应用研究进展.doc_第5页
第5页 / 共18页
生物质转化技术与应用研究进展.doc_第6页
第6页 / 共18页
生物质转化技术与应用研究进展.doc_第7页
第7页 / 共18页
生物质转化技术与应用研究进展.doc_第8页
第8页 / 共18页
生物质转化技术与应用研究进展.doc_第9页
第9页 / 共18页
生物质转化技术与应用研究进展.doc_第10页
第10页 / 共18页
生物质转化技术与应用研究进展.doc_第11页
第11页 / 共18页
生物质转化技术与应用研究进展.doc_第12页
第12页 / 共18页
生物质转化技术与应用研究进展.doc_第13页
第13页 / 共18页
生物质转化技术与应用研究进展.doc_第14页
第14页 / 共18页
生物质转化技术与应用研究进展.doc_第15页
第15页 / 共18页
生物质转化技术与应用研究进展.doc_第16页
第16页 / 共18页
生物质转化技术与应用研究进展.doc_第17页
第17页 / 共18页
生物质转化技术与应用研究进展.doc_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
资源描述

《生物质转化技术与应用研究进展.doc》由会员分享,可在线阅读,更多相关《生物质转化技术与应用研究进展.doc(18页珍藏版)》请在第一文库网上搜索。

1、生物质转化技术与应用研究进展摘要:论述了利用热化学转化和生物化学转化将生物质进行转化利用的技术,介绍了利用这些新技术在生物质发电、制取乙醇、甲醇、氢气、沼气等燃料方面的应用前景。随着人类对能源需求的不断扩大,主要为人类提供能量的化石燃料资源正在迅速地减少,化石能源的过度开发利用带来环境污染和全球气候异常的问题也日益突出。因此,寻找和开发新型可再生能源迫在眉睫。生物质能恰恰能满足这些要求,因为它具有不断的可再生性、对环境的友好性和能够抑制全球气候异常。生物质资源十分丰富,据估计,全球每年水、陆生物质产量约为目前全球总能耗量的610倍左右。目前生物质已成为仅次于煤炭、石油、天然气的第四大能源,约占

2、全球总能耗的14%。在发展中国家则更为突出,生物质能占总能耗的35%。据预测,到2050年,生物质能用量将占全球燃料直接用量的38%,发电量占全球总电量的17%。因此,许多发达国家和一些发展中国家将生物质看作是对环境和社会有益的能源资源,加快了生物质能源的产品化进程。生物质转化新技术主要是热化学转化和生物化学转化。目前,中国的大部分农业废弃物就地焚烧,导致资源浪费和环境污染。因此,充分利用现代新技术,将生物质能进行转换,对于建立可持续发展的能源体系,促进社会和经济的发展以及改善生态环境具有重大意义。1生物质转化技术1.1生物质热化学转化技术1.1.1生物质气化技术生物质气化技术是通过热化学反应

3、,将固态生物质转化为气体燃料的过程。生物质气化技术已有100多年的历史。最初的气化反应器产生于1883年,它以木炭为原料,气化后的燃气驱动内燃机,推动早期的汽车或农业排灌机械。生物质气化技术的鼎盛时期出现在第2次世界大战期间,当时几乎所有的燃油都被用于战争,民用燃料匮乏。因此,德国大力发展了用于民用汽车的车载气化器,并形成了与汽车发动机配套的完整技术。二战后随着廉价优质的石油广泛被使用,生物质气化技术在较长时期内陷于停顿状态。但第二次石油危机后,使得西方发达国家重新开始审视常规能源的不可再生性和分布不均匀性,出于对能源和环境战略的考虑,纷纷投入大量人力物力,进行可再生能源的研究。作为一种重要的

4、新能源技术,生物质气化的研究重新活跃起来,各学科技术的渗透,使这一技术发展到新的高度。按照使用介质的温度差异,将生物质气化分为常温气体气化和高温空气气化。常温气体气化是气化介质温度相对较低的气化反应,包括空气气化、氧气气化、水蒸气气化、水蒸气氧气混和气化和氢气气化。通常常温气体气化反应产气热值不高,热效率较低,要产生高热值的气体,气化条件将相对苛刻。高温空气气化技术则克服了传统的生物质气化技术通常存在的气化效率及燃气热值低,燃料利用范围小,灰渣难于处理,易形成焦油苯酚等化合物的缺点。因此,国外许多国家开发了这种高温空气气化技术。高温空气气化工艺流程为其气化剂为1000以上的高温空气,空气里伴以

5、10%20%的水蒸气,空气过剩系数控制在0.30.5之间。高温空气气化系统由气化器、集渣器、余热锅炉、燃气净化装置等组成。1000以上的空气和10%30%100的蒸气混合。1000以上的混合气体输人气化器。气化器由泡化床区和厚而有间隙的卵石床区组成。通过控制低热值燃料流量,使气化器内空气过剩系数保持在0.30.5之间。低过剩空气系数使得泡化床区发生高温空气不完全燃烧,生成的燃气和熔渣穿过卵石床进入集渣器。合成燃气先经余热锅炉释放显热以产生气化系统所需的蒸气,再经净化处理去除硫化氢、氯化氢和烟尘,最终的纯净燃气供给热能或电能发生系统。1.1.2生物质热裂解技术生物质热裂解是利用热能切断大分子量的

6、有机物、碳氢化合物,使之转变成为含碳数更少的低分子量物质的过程,包括大分子的键断裂、异构化合小分子的聚合等反应。最后生成各种较小的分子。其中主要产品可通过控制反应参数,如温度、反应时间、加热速率、活性气体等加以控制。低温慢速裂解一般在400以下,主要得到焦炭(30%);快速热裂解是在500,高加热速率(1000s-1),短停留时间的瞬时裂解,主要得到气体产物(80%以上)。在生物质热裂解的各种工艺中,不同研究者采用了多种不同的试验装置,然而在所有热裂解系统中,反应器都是其主要设备,因为反应器的类型及其加热方式的选择在很大程度上决定了产物的最终分布,所以反应器类型的选择和加热方式的选择是各种技术

7、路线的关键环节。反应器可分为机械接触式反应器、间接式反应器、混合式反应器和真空热裂解反应器4类。1.1.3生物质液化技术生物质液化是在低温(250400)及高的反应气体压力(15MPa)下将生物质转化为稳定的液态碳氢化合物,可分为直接液化和间接液化。直接液化是在高温、高压和催化剂的共同作用下,在H,CO或其混合物存在的条件下,将生物质直接液化生成液体燃料。间接液化一般是先将生物质转化为适合化工生产工艺的合成燃料气,再通过催化反应合成碳氢液体燃料。生物质液化技术是最具有发展潜力的生物质能利用技术之一。国外已有多家机构开展了生物质液化的研究,并取得了阶段性成果。1.2生物质生物化学转化技术1.2.

8、1生物质厌氧发酵技术厌氧发酵是指在隔绝氧气的情况下,通过细菌作用进行生物质的分解。将有机废水(如制药厂废水、人畜粪便等)置于厌氧发酵罐(反应器、沼气池)内,先由厌氧发酵细菌将复杂的有机物水解并发酵为有机酸、醇、H2,CO2等产物,然后由产氢产乙酸菌将有机酸和醇类代谢为乙酸和氢,最后由产CH4菌利用已产生的乙酸和H2,CO2等形成CH4。可产生CH4(体积分数为55%65%)和CO2(体积分数为30%40%)气体混合物。埋在填埋场的城市废弃物的厌氧发酵产生的沼气,若不进行回收利用,垃圾填埋场产生的沼气最终将进入大气。若将开有小孔的管道插入到填埋场,可以将填埋场产生的沼气抽出作为能源使用,还可避免

9、沼气逸入大气而加剧大气温室效应。垃圾填埋场经过特殊设计,可有利于厌氧发酵。在填埋垃圾之前,可预先铺设收集气体的管道,使气体产量得以优化。许多专性厌氧和兼性厌氧微生物,如丁酸梭状芽孢杆菌、拜式梭状芽孢杆菌、大肠埃希式杆菌、产气肠杆菌、褐球固氮菌等,能利用多种底物在氮化酶或氢化酶的作用下将底物分解制取氢气。底物包括:甲酸、丙酮酸、CO和各种短链脂肪酸等有机物、硫化物、淀粉纤维素等糖类。这些物质广泛存在于工农业生产的污水和废弃物中。厌氧发酵有机物产氢的形式主要有2种:一是丙酮酸脱氢系统,在丙酮酸脱羧脱氢生成乙酰的过程中,脱下的氢经铁氧还原蛋白的传递作用而释放出分子氢;二是NADH/NAD平衡调节产氢

10、,当有过量的还原力形成时,以质子作为电子沉池而形成氢气。研究发现,在产氢过程中反应器的pH值在4.75.7之间时生物质产氢率最高,其体积含量约60%左右。另外,分解底物的浓度对氢气的产量也有很大的影响。厌氧发酵制氢的过程是在厌氧条件下进行的,因此氧气的存在会抑制产氢微生物催化剂的合成与活性。由于转化细菌的高度专一性,不同菌种所能分解的底物也有所不同。因此,要实现底物的彻底分解并制取大量的氢气,应考虑不同菌种的共同培养。厌氧发酵细菌生物制氢的产率较低,能量的转化率一般只有33%左右。为提高氢气的产率,除选育优良的耐氧菌种外,还必须开发先进的培养技术才能够使厌氧发酵有机物制氢实现大规模生产。1.2

11、.2生物质水解发酵技术乙醇可以从含有糖、淀粉和纤维素的生物质制取。乙醇最主要的原料是甘蔗、小麦、谷类、甜菜、洋姜、木材。生物质原料的选择很重要,因为原料价格构成了最终产品乙醇销售价的55%80%。乙醇的生产过程(发酵流程)为先将生物质碾碎,通过催化酶作用将淀粉转化为糖,再用发酵剂将糖转化为乙醇,得到的乙醇体积分数较低(10%15%)的产品,蒸馏除去水分和其他一些杂质,最后浓缩的乙醇(一步蒸馏过程可得到体积分数为95%的乙醇)冷凝得到液体。通过蒸馏可将乙醇提纯,1t干玉米可以生产450L乙醇。乙醇可用于汽车燃料。发酵过程中产生的固体残留物可为发酵过程提供热量,因为在蒸馏阶段需要很多热能,特别是对

12、于生产乙醇体积分数为99%以上的复杂蒸馏过程。残留物也可作为动物饲料。对于蔗糖,其残留物可作为锅炉燃料或者是气化原料。淀粉类生物质通常比含糖生物质便宜,但需要进行额外的处理。由于存在长链的多聚糖分子以及将其通过发酵转化为乙醇之前需要酸化或者是酶化水解,木质纤维素生物质(木材和草)的转化较为复杂,其预处理费用昂贵,需将纤维素经过几种酸的水解才能转化为糖,然后再经过发酵生产乙醇。这种水解转化技术目前正处于实验研究阶段。1.2.3生物质生物制氢技术光合微生物制氢主要集中于光合细菌和藻类,它们通过光合作用将底物分解产生氢气。1949年,GEST等首次报道了光合细菌深红红螺菌(Rhodospirillu

13、m rubrum)在厌氧光照下能利用有机质作为供氢体产生分子态的氢,此后人们进行了一系列的相关研究。目前的研究表明,有关光合细菌产氢的微生物主要集中于红假单胞菌属、红螺菌属、梭状芽孢杆菌属、红硫细菌属、外硫红螺菌属、丁酸芽孢杆菌属、红微菌属等7个属的20余个菌株。光合细菌产氢的机制,一般认为是光子被捕获得光合作用单元,其能量被送到光合反应中心,进行电荷分离,产生高能电子并造成质子梯度,从而形成腺苷三磷酸(ATP)。另外,经电荷分离后的高能电子产生还原型铁氧还原蛋白(Fdred),固氮酶利用ATP和Fdred进行氢离子还原生成氢气。微藻光制氢的过程可以分为2个步骤:首先微藻通过光合作用分解水,产

14、生质子和电子,并释放氧气;然后微藻通过特有的产氢酶系(蓝藻通过固氮酶系和绿藻通过可逆产氢酶系)的电子还原质子释放氢气。2生物质转化技术的应用2.1生物质发电2.1.1生物质气化发电生物质气化技术是利用生物质作为高品位能源的一种新技术,近年来欧洲很多研究人员对生物质气化发电技术进行了大量的研究,并取得了相当的成果。生物质气化发电技术的基本原理是把生物质转化为可燃气,再利用可燃气推动燃气发电设备进行发电。它既能解决生物质难于燃用,而且分布分散的缺点,又可以充分发挥燃气发电设备紧凑而且污染少的优点。所以,气化发电是生物质能最有效、最洁净的利用方法之一。气化发电过程主要包括3个方面:一是生物质气化,在

15、气化炉中把固体生物质转化为气体燃料;二是气体净化,气化出来的燃气都含有一定的杂质,包括灰分、焦炭和焦油等,需经过净化系统把杂质除去,以保证燃气发电设备的正常运行;三是燃气发电,利用燃气轮机或燃气内燃机进行发电,有的工艺为了提高发电效率,发电过程可以增加余热锅炉和蒸汽轮机。生物质气化发电技术在发达国家已受到广泛重视,如奥地利、丹麦、芬兰、法国、挪威、瑞典和美国等国家生物质能在总能源消耗中所占的比例增加相当迅速。奥地利成功地推行了建立燃烧木材剩余物的区域供电站的计划,生物质能在总能耗中的比例由原来的3%增到目前的25%,已拥有装机容量为12MW的区域供热站90座。瑞典和丹麦正在实施利用生物质进行热

16、电联产的计划,使生物质能在转换为高品位电能的同时满足供热的需求,以大大提高其转换效率。一些发展中国家,随着经济发展也逐步重视生物质的开发利用,增加生物质能的生产,扩大其应用范围,提高其利用效率。菲律宾、马来西亚以及非洲的一些国家,都先后开展了生物质能的气化、成型固化、热解等技术的研究开发,并形成了工业化生产。美国在利用生物质气化发电方面处于世界领先地位。美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平,可生产中热值气体。这种大型生物质气化循环发电系统包括原料预处理、循环流化床气化、催化裂解净化、燃气轮机发电、蒸汽轮机发电等设备,适合于大规模处理农林废物。国内很多单位也进行了此方面的研究,如中国科学院广州能源研究所,成功地把流化床技术应用到

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 行业资料 > 能源电力

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服