《循环水养殖系统中水动力特性及其与鱼类相互影响研究进展.docx》由会员分享,可在线阅读,更多相关《循环水养殖系统中水动力特性及其与鱼类相互影响研究进展.docx(23页珍藏版)》请在第一文库网上搜索。
1、摘要:水产品含有丰富的蛋白质及人体所需的营养元素,随着人民生活水平的提高,水产养殖业迅速发展,为解决传统水产养殖业受环境污染、食品安全、自然灾害、疾病频发等方面的困扰,工厂化循环水养殖成为水产养殖业转型发展的养殖新模式之一。循环水养殖系统中的养殖池水体是养殖动物赖以生存与健康生长的场所,优化养殖池环境是实现鱼类等水产动物健康养成的关键。本文以建立环境友好、水质优良、资源节约、动物健康的高效绿色养殖模式为目标,以实现水产品的高品质、高产出为宗旨,综述了循环水养殖系统中水动力研究方法,以及养殖池内流场、固体颗粒物集排污、可溶性与悬浮污染物输移扩散、增氧性能、鱼类与流场相互影响等密切相关的水动力问题
2、,并就当前循环水养殖系统水动力研究中存在的问题进行了总结,提出了加强养殖池水动力及其与结构设计、优化等关键技术的集成应用研究,以及基于养殖动物开展水动力学研究等未来发展建议,以期为循环水养殖事业的发展提供科学参考。关键词:循环水养殖;养殖池;水动力;鱼类;排污20世纪70年代,水产养殖业在世界范围内迅速兴起,在之后的水产业发展历程中,中国成为第一个也是唯一一个在养殖产量上超过捕捞量的国家。在过去的几十年里,中国水产养殖业的发展速度超过全球人口的增速,并成为世界第一水产养殖大国。2023年中国水产养殖产量为5224.20万t,占全年水产品总产量的79.77%。随着水产养殖业的迅速发展,环境污染、
3、水质恶化、水资源浪费、水产品品质下降等一系列问题日益突出。如传统的池塘养殖基础设施薄弱,导致水产品品质、产量逐步降低;而随着养殖密度的增加,养殖水体易富营养化,水质受污染严重,养殖尾水排放带来的环境问题增多。为解决这些难题,维持绿色、健康的养殖环境,高效循环水养殖模式逐渐走向产业化并呈现快速发展势头。工厂化循环水养殖通过去除养殖水体中的残饵与粪便等固体颗粒物及有害物质并经过多种水处理程序,以保持水质稳定及健康的养殖环境,符合科学环保及可持续发展理念;其综合现代生物技术及信息化科学、工程应用技术等于一体,为实现生态环保及水产品的高品质、高产量起到了重要作用。与传统养殖生产方式相比,工厂化循环水养
4、殖具有养殖环境可控、空间利用率高、水资源节约、养殖密度高、环境污染小、产品品质可控、供应安全稳定、养殖生产与投资风险低等优点,使其成为水产养殖业转型升级发展的重要方向之一。目前,国内外学者和科研机构在循环水养殖模式构建中更多地集中在养殖鱼种的选育、水处理技术和养殖装备的攻关研究上,对于养殖池及其流态的研究相对较少。由于进水系统的能量是养殖池系统流场的驱动力,也关系到养殖池内残饵、粪便等废弃物的汇聚与排出,良好的水动力性能有利于污染物的排出,养殖池水动力直接影响生物的健康和福利。因此,养殖池水动力的研究至关重要。本文综述了循环水养殖池系统中水动力及其与鱼类相互影响的研究进展,旨在为进一步研究养殖
5、池内流场特性,优化池内养殖动物的生存环境提供借鉴,为实现循环水养殖模式的优化发展提供科学参考。1循环水养殖系统水动力研究方法为研究循环水养殖系统内流场现象及水动力的作用机理,采用适宜的研究方法与技术手段尤为重要。目前,循环水养殖系统内水动力的研究方法主要分为物理模型试验法和数值模拟法(表Do表1水动力研究方法Tab.1Researchmethodsofhydrodynamics研究方法researchmethod研究对象researchobject研究工具researchtoo1分析参数ana1ysisparameter文献来源reference曝气池ADV流速分布.京动强度张变数等”物理慑型
6、试龄法滥混分离池PIV渣速分布Sterczynska等imeasurement池式的道P1V.DV水流速度、湍动能Qunrrma等methodofPIV流动结构,液涡强度金洁等“physica1实监室水蚀机理水槽PIV流速分布、系动蟆度、曲诺应力杨坪坪等3mode1test方形WI切体养殖池图像采集处理系统污累物聚集分布特征张法等方形IW切用养第池图像采集处理系统污染物聚集分布特征赵乐中J数值模拟法双通道刖形养殖池八用形捽殖池CFDCFh水流速度液速分布.锁粒去除效率刘乃顽等间Uu等num超声多普勒仪(ACoUStiCDopp1erVe1ocimetry,ADV)和激光多普勒测速仪(1aSer
7、DoPPIerVeIOCin1etry,1DV),粒子流速仪包括粒子图像流速仪(PartiC1eImageVe1ocimetry,P1V)和粒子追踪流速仪(PartiCIeTrackingVe1ocimetry,PTV)o循环水养殖系统水动力研究中,以ADV、PIV应用较多并取得一定的研究成果。ADV是基于声学多普勒效应原理,由相干声学脉冲的频移或相移来计算3个接收探头方向的速度,进而转换为正交坐标系中的流速,主要用于记录相对高频率的单点瞬时速度分量。ADV以操纵简单、精度高、无需率定、可用于三维速度测量等优点,已成为物理模型试验流场测量中使用广泛的测量手段。但ADV也存在一定的局限性,由于采
8、样点与发射及接收探头存在一定的距离,因此,距离水面相对较近的位置无法获取测量数据,而仪器本身也同样存在缺陷,导致流速信号存在噪声部分,对数据的精确程度存在一定的影响。此外,ADV在清澈的水流中难以准确测量,需添加一定浓度的悬浮颗粒反射超声波信号以提高测量精度。有学者采用ADV对曝气池内的流场特性进行了试验研究,分析了流场分布情况及紊动强度。相比于ADV等传统的流速测量技术,PIV是一种非接触式瞬时全流场测量技术,其突破了单点测量的局限性,实现了全流场瞬态测量及无干扰测量。PIV能更好地评估加入挡板后漩涡分离池内的流速分布,实现流动条件的改善。也有学者同时采用PIV和ADV测量了与池式鱼道底部和
9、侧壁平行的平面上多个位置的水流速度和湍动能(TKE),并分析了两种方法的差异,结果表明,两种方法监测的数据具有良好的吻合性。养殖池水动力是循环水养殖池系统固体颗粒物集排污的直接驱动力,对固体颗粒物的排出及分布有显著影响,通过分析固体颗粒物的聚集分布特征进而也能反映出池内流场分布特性。由高分辨率照相机、电脑、控制软件组成的图像采集系统被广泛应用于采集养殖池内污染物的聚集分布图像处理,并通过图像处理方法对采集到的图像进行图像预处理、图像增强、图像分割、二值化和轮廓提取等相关处理步骤,进而采用处理后的图像分析污染物的聚集分布特征,污染物的聚集分布特征也间接地反映出池内水动力特性。1. 2数值模拟法数
10、值模拟法是根据工程及物理问题等运用计算机进行数学建模并进行模拟计算,达到解决实际问题的目的。应用计算流体力学(computationa1f1uiddynamics,CFD)数值模拟分析循环水养殖系统内水动力特性,是优化与获得较好的结构参数及运行参数的有效手段之一。随着CFD的迅速发展,养殖池内水动力研究从单相流发展到多相流,并成为物理模型试验手段的有效补充与重要支撑。迄今为止,CFD已被广泛用于养殖池中的水动力特性研究。相关成果中多为利用CFD技术模拟分析养殖池结构对养殖池内流态分布的影响,近年来,关于固-液和固-液-气多相流的数值模型研究也逐步发展起来。1iu等利用CFD建立循环水养殖系统八
11、角形养殖池三维数值模型,通过模拟获得了养殖池内的流速分布及固体颗粒的去除效率,并将数值结果与一个完整的物理模型监测数据进行了对比,其结果具有一致性。汪翔等利用CFD对养殖跑道、集污区进行固-液-气三相流稠密离散相模型模拟,研究了跑道式养殖系统内的流速分布及集污区固相颗粒的分布特征。CFD的应用促进了养殖池水动力研究的发展,相比于物理模型试验法,CFD能更加全面地反映养殖池内的流场信息,具有建立模型系统便捷、易于调整系统参数、不占用场地、周期短、成本低等优点,极大地节省了人力、物力和财力。但CFD技术也存在一定的不确定性,需要数值模型建立准确、网格划分适宜、边界条件设置合理等理论技术支撑以提高模
12、拟的精确性,同时,数值模型的应用还需要物理模型试验数据和生产实测数据的验证作为支持。物理模型试验研究和数值模型模拟研究互为补充,二者结合可以更好更准确地开展养殖池系统水动力学研究,以明确流场分布规律及深层次的流体力学机理。2循环水养殖系统水动力特性在循环水养殖系统中,养殖池是鱼类及其他养殖动物赖以生存的场所,而良好的水动力环境有利于创建优质的养殖环境以保证鱼类的健康和福利。通过调控养殖池内的流场,使其达到鱼类的偏好流速,从而构建适宜的鱼类养殖环境,这对鱼类生长、品质养成均起着至关重要的作用。因此,研究养殖池内水动力特性对提供良好的养殖环境,提高养殖动物的品质,增加经济收益等方面均有重要意义。养
13、殖池结构是影响水体流动模式的主要因素,对其进行合理设计是满足鱼类最优流场速度、有效水体交换、均匀进料分配、良好水质及较低能量消耗的关键。养殖池结构的细微变化也会对养殖池内的水动力特性产生较大的影响,在当前应用大型养殖池以降低成本的发展趋势下,优化养殖池设计对于实现养殖池内的水体流动条件发挥着不可低估的作用。养殖池参数包括养殖池的形状与尺寸、进水结构(进水位置、入射角度等)、排水结构、进水流速、出水流速、循环量等操作参数,还包括切向与径向速度分量、雷诺数、冲力等功能参数。目前,在养殖池设计优化方面已取得了一定的研究进展,其中,养殖池的池型、进水结构、排水结构等是影响养殖池水动力的主要因素。2.1
14、养殖池池型对流态的影响池型结构是影响养殖池内水动力的最重要参数之一,常见有圆形、矩形、方形圆弧角、跑道式、八角形、圆锥形养殖池等。循环水养殖池的池型各异,各种池型优缺点同样明显。圆形养殖池具有优良的流态,水体交换均匀、无死角,且近似于圆柱体易产生二次流,有利于固体废弃物汇聚到池底中央排水口并顺利排出,但其空间利用率低、养殖水体造价较高。矩形养殖池虽有较高的空间利用率,但并不具备活塞流、混合流两种理想流动模式,与圆形池相反,由于池角处存在死水区,水体的整体流态较差,不利于污物的聚集与排出。方形圆弧角养殖池即方形圆切角养殖池,其结合了圆形养殖池和矩形养殖池各自池型的优良特性,在养殖池内流态和空间利用率方面都具有相对较好的优势,具备良好的产业推广价值。此外,跑道式养殖池、八角形养殖池除了自身优势外,也存在死水区、集排污效果不佳的困扰。为实现养殖池内良好的流态及混合性,许多学者开展了养殖池池型结构方面的研究。研究发现,“矩形混合池养殖单元”通过将矩形养殖池改装成6个相邻反向旋转的混合单元,排水口位于每个单元的底部中心,切向射流于单元池内建立旋转循环,这些矩形单元池的混合流动特性与圆形池中监测到的流场形态相似。此外,在相似结构的养