《复杂地质富水隧洞TBM施工综合超前预报技术实践2.docx》由会员分享,可在线阅读,更多相关《复杂地质富水隧洞TBM施工综合超前预报技术实践2.docx(8页珍藏版)》请在第一文库网上搜索。
1、复杂地质富水条件下TBM施工隧洞综合超前预报体系实践在水利水电领域,随着重点水电工程和跨流域输水工程的建设规划,将建设一批长径比达60(MooO及以上的深埋长大引水隧洞。在此条件下,国际公认采用全断面隧道掘进机(tunne1boringmachine,简称TBM)掘进施工具有高效、高性价比、环保等优势。随着我国掘进设备设计制造水平的进步,以吉林引松工程为代表的自主品牌TBM在赢得了建设单位、施工企业信赖的同时,也在国内、海外项目推广开来。但基于TBM较差的地质适应性,施工进度受地质条件制约,波动较大。综合分析众多TBM卡机事故案例,究其原因,主要是:1.受资金、技术、环境等诸多原因影响,导致有
2、不良地质体被前期勘察“漏掉”,没被查明;2.由于TBM施工隧洞环境的复杂性,在该类隧洞中按照钻爆施工隧洞超前地质预报方法开展存在较大的难度,且预报效果也会受到众多干扰源的影响,难以为TBM的安全掘进提供技术指导。目前,我国TBM施工隧洞基本上都是TBM施工与钻爆施工相结合的,这是隧洞施工现状,也是工法调研后的必然,这样可以兼顾二者长处,是高效、高性价比、低风险地修建隧洞工程的最佳选择。但能兼顾钻爆隧道与TBM隧道的综合超前预报体系且鲜有研究。本文同度物探以秘鲁圣佳旺(SanGaban)In水电站引水隧洞为例,通过对TBM施工特性的研究,改良TST地震波法和CFC复频电导法的现场采集方式,建立起
3、复杂地质富水隧洞综合超前预报体系,以期为相似隧洞工程提供参考。1工程概况与不良地质分析1.1 工程概况圣加旺水电站距离秘鲁首都利马直线距离约740km,电站为圣加旺河干流开发方案的最下游一级,位于秘鲁东南部普诺(PUnO)大区Carabaya省SanGabAn区SanGab圆n河右岸(见图1)。工程区属高山峡谷地貌,山势雄伟,地势陡峻,植被茂密。区内沟脊相间,受沟谷深切,地形完整性差。圣佳旺河两侧支沟多以大角度与其交汇,支沟常年有水,水流急速,冲沟沿线多有跌坎。圣佳旺I水电站引水隧洞长14773.45m,Y0+000Y6+000段采用钻爆法施工,后半段Y6+000Y14+773.45m采用一台
4、敞开式TBM掘进施工,其开挖直径5.8mo1.2 不良地质分析圣佳旺I水电站引水隧洞地质纵断面图如图2所示。隧洞岩性主要为中微透水的花岗闪长岩、片岩和板岩,隧洞埋深240m以上,穿越多个向斜背斜等较复杂的地质构造。虽然在某些洞段地表未发现大型断层,但岩体中会发育许多未延伸至地表或被覆盖层所覆盖的不良地质构造。因而实际开挖中可能会遇到断层、软弱夹层、节理裂隙密集带等影响施工安全的不良地质,同时洞身位于地下水位以下,地表存在多个大型的常年流水的冲沟,可以推断隧洞地下水分布情况会极其复杂。当不良地质与富水洞段叠加时,施工中会发生突泥突水等重大事故,对施工安全等带来严重影响。针对圣加旺I水电站引水隧洞
5、的工程地质特点,施工期开展超前预报工作具有十分重要的意义。可以提前了解学子面前方围岩的地质条件,特别是了解断层、软弱夹层、裂隙密集带、含水地层、富水带等不良地质情况,确定其地性质、种类、位置和规模,提前做好施工准备和施工计划,防患于未然,保障施工的安全。2 图1圣佳旺I水电站引水隧洞位置图3 TBM施工隧洞综合超前预报体系首先应在前期地勘资料基础上,结合现场地质情况和开挖揭露情况,不断分析和研判TBM洞段的地质构造分布规律。其次,在每次的综合超前预报实施中,通过及时跟踪对比总结规律,并在后续预报的解译中不断的加以修正,逐步探索和建立起在该工程地质背景下的典型地质体与超前预报成果的对应体系。同时
6、,应充分认识到任何单一的物探技术手段都有其自身的局限性。TST超前地质预报技术利用隧道围岩的波阻抗差异,对弹性模量等力学参数的变化敏感,可以用于地质体的划分因);而CFC超前探水技术属电磁波法,其对岩体介质的电阻率、介电常数等电磁学参数的变化较敏感,可以用于探水12队在这两种物探方法上,充分结合地质素描、超前钻探等地质手段,建立起成熟的综合超前预报体系,从而更有力的保障TBM与钻爆施工安全。TBM掘进工序流程图如图3所示,综合超前预报体系流程如图4所示。图3TBM掘进工序流程图I研刘S育资料,制定K报方案I1I地廉素懒产合分析II电极波反。相祠1物探异常II汇.9初HiIg月根.年报及翁工总8
7、告图4综合超前预报流程4 .1地震波法-TST2.1.1原理借助在钻爆隧洞中成熟的TST超前地质预报技术,开展TBM施工隧洞超前地质预报工作,对不良地质体进行预报。地震波法预报技术基本上都是利用震源激发弹性波(地震波、声波),当弹性波遇到不均匀介质表面时,由于弹性波阻抗的差异,在界面处发生透射和反射,对接收到的弹性波信号进行数据处理,提取出前方反射信息,反演前方围岩的力学性质。由于空间观测系统和反演算法的不同,区分出多种地震波法超前预报技术。而制约常规地震波法技术进入TBM施工隧道的关键点之一就在于震源。目前,可在TBM隧道中应用的超前预报技术,其利用的震源分为两种,一种是被动震源,如刀盘破岩
8、时产生的振动信号;另一种是主动震源,多为机械震源。被动震源由于能量弱,探测距离近,这削弱了地震波法的长距离预测优势。近年来,由于可控震源技术的进步,小型可控震源,促进了地震波法在TBM隧道中的应用。本次TST预报采用了TDIS可控冲击震源,冲击震源作用于隧洞边墙,激发的纵波传播的优势方向为径向,而横波传播的优势方向为轴向,所以应采用横波做超前地质预报a”通过对圣佳旺水电站引水隧洞开展连续多次全里程TST超前地质预报,总结出当地板岩围岩与横波波速关系】:完整致密的板岩横波波速在28003000ms;裂隙发育的板岩横波波速在23002500ms(板岩波速与板岩石英含量、埋深等多种因素有关)。2.1
9、.2现场布置仪器采用TST隧道超前预报系统,主要由地震信号采集器、检波器及震源等几部分组成。采集参数如下:采样率40Khz,26道采集,采样时长IOOs,解码后保留数据长度300ms。TD1S可控冲击震源使用的参数为:重复频率5-25次/秒,冲击时间Io0s,冲击次数1500次/点,冲击能量为6万焦耳/点。现场设置接收孔8个,布置在11区主梁下方,贴紧盾尾,在隧洞两侧对称布置。接收孔间距2m,孔深1.8m,接收孔保持在同一水平面,检波器用黄泥耦合。激发孔12个,也布置在11区,但是分别布置在主梁上下两个水平面上,每个平面间距8m布置6个。可控冲击震源直接在裸岩表面激振。三维TST现场布置如图5
10、所示,TST超前地质预报工作流程如图6所示。图5TBM施工隧洞中三维地震观测方案现场数据采集I-工作II133,;I1I安装半淤器II布,线II安利!瞒IIagJt-Hff1I匡I激.采集IT卓+I回一I丁一聋:疣记录表I可收仪器采集完成一I数据处理与成果解释II+I则逊表II坐标“设I:Jr!I-据预处理I!4I方向温与波场芬函;I方向滤波与波场芬函I:IW*;I顿构造愉移成赢I酹勘磬3分司;JI池质构造-图1I困岩波速分布图|!iIWI结合工程地质;I预报解译与报告时;图6TST超前地质预报工作流程2.2CFC复频电导法2.2.1 原理CFC是一种中频电磁波反射法探水技术,探测时首先向前方
11、围岩发射电磁波,当电磁波入射到非均匀含水围岩中时,由于两个界面的电磁波阻抗存在差异而发生反射,反射波随含水量差异程度的增大而增强26,28,32。由于当接收点位于四分之一波长时,入射波与反射波会发生干涉,对多组不同接收位置的电磁波数据进行频谱相干分析。通过对电磁波速进行偏移图像能量最大化扫描,求取最优电磁波速,和最优偏移图像。再通过公式(1),得到该段围岩的相对介电常数,以相对介电常数来判断该段围岩整体含水量的大小,用偏移图像来反映围岩含水特性,以此来预报富水带的位置和围岩的含水差异程度。T(|)式中:C为电磁波在真空中的传播速度,V为电磁波在围岩中的传播速度,外为围岩的相对介电常数。2.2.
12、2 现场布置无论弹性波场还是电磁波场,隧道超前预报中方向性是关键问题,如何确保对学子面前方区域的探测,是任何一种物探方法都必须解决的。CFC对此问题通过观测方式和数据处理结合解决。首先在观测方式上,采用阵列式的收发,形成类似“八木天线”的强指向性观测系统,如图7所示,其中AB为发射电极,MN为接收电极。同时在数据处理上,对原始数据首先进行白化和滤除,然后再进行后续的处理,提高学子面前方的电磁波场数据信噪比,从而确保了方向性。CFC采用偶极子天线发射与阵列接收,电极长度1.5-2.0m,埋设于两侧围岩中,可有效地避免隧洞内金属机具等电磁干扰。电极间距5-10m,5对电极阵列接收。CFC超前探水工
13、作流程,如图8所示。i”+)回,Im”u1JJH-I(东情gn)|TEMIQ-TMy痴IwheG”wI图8CFC超前探水工作流程3综合超前预报体系应用效果及分析综合超前预报系统,不仅在TBM施工段隧洞进行预报,也对钻爆段提供了技术支持。在完成调试和测试后,己累积施作20余次,全部探明施工中遇到的重大不良地质,且仍在保障施工中。其中,已探明施工过程中典型不良地质体如表1。里程探测结果揭露结果Fy207断层发育,闹岩破TST:用岩强度较低,波阻抗界面较碎,呈碎石央多,国岩破碎,完整性较差土,地下水发Y14+722CFC:闹岩平均相对介电常数为育,左右洞壁10.08,在该处偏移图像能显较强,有股状出
14、水推测该段地下水较多,呈股状流水点,涌水量:40-501minFy208断层发TST:国岩强度较低,波阻抗界面较育,国岩破多,围岩破碎,完整性较差碎,呈断层Y14+680CFC:围岩平均相对介电常数为泥,地下水发10.08,在该处偏移图像能量较强,育,呈淋水推测该段地卜.水较多,呈股状流水状,涌水量约1O1ZminTST:国岩强度中等,波阻抗界面较国岩破碎,1也多,围岩较破碎,完整性较差下水以线状-股Y5+465CFC:围岩平均相对介电常数为状流水为主,14.60,在该处偏移图像能量较强,涌水量约推测该段地卜冰较多,有涌水可能12001minTST:在该处波速骤降,波阻抗界面岩性过渡带,较多且
15、能量较强,推测围岩强度较前岩性从花岗闪Y0+983段降低,围岩破碎长岩转变为绢CFC:围岩平均相对介电常数为云母片岩,闹岩干燎5.92, 在该处偏移图像能量整体偏弱,推测该段地下水较少,围岩干燥表1典型不良地质体探测结果与开挖结果时比验证3.1 TST地震波探测分析TBM掘进至Y14+762时,开展地震波法超前预报探测。对三维采集得到的地震数据进行三维成像处理(如图6),得到的三维地震偏移图像如图9所示,波速结构如图10所示。三维地震偏移图像以隧洞中心点为零点,向幅宽、高度两方向各扩展20m,向前(里程)Ioon1进行成像。结合地质资料的综合分析推断,该段围岩岩性以板岩为主,存在物探异常区2处。综合考虑,该段划分为7个地质单元:1Y14+762Y14+759段(OTm),三维偏移图像中,正负反射条纹基本的分布呈现从刀盘中心向四周扩散的形态,推断该段推测由于开挖扰动、出渣等,导致围岩结构被破坏。2.