液流电池模拟仿真研究现状与展望.doc

上传人:w** 文档编号:281864 上传时间:2023-07-17 格式:DOC 页数:21 大小:1.71MB
下载 相关 举报
液流电池模拟仿真研究现状与展望.doc_第1页
第1页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第2页
第2页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第3页
第3页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第4页
第4页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第5页
第5页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第6页
第6页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第7页
第7页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第8页
第8页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第9页
第9页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第10页
第10页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第11页
第11页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第12页
第12页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第13页
第13页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第14页
第14页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第15页
第15页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第16页
第16页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第17页
第17页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第18页
第18页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第19页
第19页 / 共21页
液流电池模拟仿真研究现状与展望.doc_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《液流电池模拟仿真研究现状与展望.doc》由会员分享,可在线阅读,更多相关《液流电池模拟仿真研究现状与展望.doc(21页珍藏版)》请在第一文库网上搜索。

1、液流电池模拟仿真研究现状与展望液流电池作为一种典型长时储能电池,是可再生能源为主体的新型电力系统的重要组成部分。液流电池技术的不断发展对工程化电堆开发和系统设计提出了更高要求,相比于传统实验测试方法周期长成本高的特点,模拟仿真技术高效而便捷,近年来在液流电池高功率电堆和大容量储能系统设计方面起到了重要作用。本文将基于现有研究工作,重点围绕液流电池基础科学问题的模拟仿真、电堆数值模拟与动态仿真、储能系统模拟仿真与设计三个方面,对液流电池模拟仿真研究现状进行综述和分析,最后对未来液流电池模拟仿真技术的进一步发展提出了展望。能源是人类社会赖以生存和发展的基石,工业革命以来大量化石能源的不断消耗,导致

2、了二氧化碳的过量排放,逐步引发温室效应和世界气候的急剧变化,引发世界各国的关注。2016年175个国家联合签署了巴黎协定,旨在控制温室气体排放,是对2020年后全球应对气候变化的行动作出的统一安排。2020年,我国明确提出了2030年“碳达峰”与2060年“碳中和”的目标,而发展可再生能源和储能技术被认为是实现这一目标的重要途径之一。以风能、太阳能为代表的可再生能源是绿色低碳能源,是我国电力系统发电侧的重要组成部分,对实现双碳目标和可持续发展具有重要作用。然而,可再生能源的不连续性和随机性的特点,决定了其并网发电时需要匹配大规模储能,以实现安全高效的可再生能源消纳使用。在众多大规模储能技术中,

3、液流电池储能技术以其高安全性、长寿命、容量和功率可相互独立设计等特性,非常适用于电力系统储能应用。液流电池技术的提出最早可追溯到20世纪70年代,NASA首次提出了以铁铬为正负极活性物质的铁铬液流电池体系,然而铁铬液流电池存在交叉污染、铬负极动力学差、易发生析氢副反应等问题,制约了其进一步发展。针对铁铬液流电池的不足,80年代澳大利亚新南威尔士大学的Skyllas-Kazacos教授提出了以钒为正负极活性物质、硫酸为支持电解液的全钒液流电池体系。由于正负极采用了同种反应物质,有效地避免了交叉污染问题,并且V2+/V3+和V4+/V5+氧化还原反应具有较快的动力学特性,极大地推动了液流电池技术的

4、发展。21世纪初,国内以中科院大连化物所、中科院金属研究所、清华大学等为代表的国内研究机构对全钒液流电池反应机理、关键材料和电堆集成设计开展了全面的系统研究开发,取得了一系列重要成果,并促进了诸如大连融科储能、北京普能、伟力得能源、上海电气等一批液流电池制造商的发展。与此同时,以锌基、铁基等无机多电子转移过程为特色的新型液流电池技术研发也取得了长足进步,同时有机液流电池体系也获得了广泛关注,极大地促进了液流电池技术的整体快速发展。随着液流电池技术的不断发展,对液流电池的性能也提出了更高的要求,传统的液流电池实验研究手段具有周期长、成本高和难以解耦变量间相互关联等局限性,相比之下,模拟与仿真技术

5、可以对液流电池关键变量在时间和空间尺度变化规律进行准确分析与预测,有效指导电池结构设计、运行参数优化和控制策略选择,其作为一种高效的研究手段,近年来在液流电池设计与开发中得到了广泛应用。而“十四五”期间国家对液流电池技术发展也提出了更高的要求,明确了宽温区运行、高功率单体电堆和多电堆储能模块设计、能效恢复与系统优化控制等研究任务与技术指标,而要突破现有瓶颈实现更高的技术指标,在实验手段的基础之上合理有效地使用模拟仿真技术,可以事半功倍有效助力高功率电堆与高能效储能系统的设计开发。本文将聚焦液流电池模拟仿真技术,重点围绕基础科学问题、电堆设计和储能系统开发中的相关问题与研究进展进行综述、分析、总

6、结和展望。1 基础科学问题的模拟仿真液流电池内部离子和电子的传输与电化学反应,受流场、温度场、电场等多物理场耦合作用影响,传统实验方法难以定性揭示特定变量对电池性能的影响,而基于有限元分析法的数值仿真技术可以通过对多物理场边界条件和耦合作用的设置,实现对电池内部几何空间关键特性的有效模拟与分析。针对液流电池内部多场耦合下的基础科学问题,Shah等首先提出了二位瞬态模型,用于模拟各价态钒离子在电池内部的分布特性,并以此为基础进一步模拟了析氢析氧副反应对电池性能的影响以及电池内部的温度变化分布规律,为深入理解全钒液流电池内部传质、传热特性和电化学反应机理提供了可视化参考依据。在此基础上You等研究

7、了外加电流密度、电极孔隙率和局部传质系数对电池性能的影响;Yue等通过数值模拟与实验相结合的方法,系统深入地研究了压缩比对极化及电池性能的影响,并通过实验验证了获得最优压缩比的电池组件的性能优势;Lei等基于道南效应,更准确地模拟了离子膜内的离子分布、电势变化及其对电池性能的影响规律。除有限元分析之外,Tang等还首先提出了全钒液流电池时域下的动态机理模型,该模型基于质量守恒定律和菲克扩散定律,结合能斯特方程,可准确描述电池充放电条件下正负极各价态钒离子透过离子膜向异侧溶液扩散的过程。结合不同种类离子交换膜扩散系数的实验数据,该模型实现了全钒液流电池容量衰减的动态分析和预测。而液流电池动态模型

8、的建立,不仅可以预测电池容量随充放电反应进行的演化规律,同时可指导容量再平衡和液流电池控制系统的设计。进一步,Zhao等还充分考虑了温度对扩散、溶液体积迁移速率以及流体阻力的影响,利用动态模型更加深入系统研究了容量衰减、体积迁移和压降的变化规律,并分析了不同流量对溶液温度和电池性能的影响,相关研究为进一步理解液流电池动态特性及其对电池性能的影响机制提供了参考依据。2 电堆数值模拟与动态仿真2.1 电堆流场设计电堆结构设计是液流电池技术开发的主要任务之一,而高功率电堆的实现不仅需要高性能电池材料,还需要设计开发相适应的流场结构,以降低高电流密度运行下的浓差极化电压和高流量下的泵损耗,从而获得最佳

9、的能量效率与系统效率。对于流场结构的设计与优化,数值模拟仿真具有传统实验手段所不具备的优势,可以灵活模拟分析多物理场耦合不同流场结构的关键变量在几何空间内分布特性。在国内全钒液流电池研究初期,中科院大连化物所研究人员首先利用有限元数值分析方法,建立了二维和三维的瞬态模型,系统分析了液流电池内部传热、传质、传动量和电化学反应的交互作用机制。其中,Ma等在给定负半电池几何形状的条件下,研究了垂直和平行于外加电流截面上的速度、浓度、过电位和电流密度的分布(图1);Zheng等研究了浓差极化的时空变化特征,设计并优化了一种新型的塞流短流道矩形结构电池。与此同时,港科大研究团队提出了一系列新型流道结构设

10、计,进一步提升了高电密条件下液流电池的运行效率。其中比较具有代表性的工作包括Zhang等建立的钒氧化还原液流电池流场设计的二维数学模型,利用该模型模拟了410 cm2单元下的交错通道和一系列平行蛇型通道设计。结果表明,随着平行蛇型通道数量的增加,泵浦功率降低,钒离子分布变得不均匀,相比之下交错流场设计泵送功率最低,钒离子分布更加均匀(图2);Wang等针对蛇型和插指型流道,通过仿真和实验相结合的方式系统地研究了比流量、流场尺寸对传质及电池性能的影响规律。结果显示,在相同比流量下,电解液在蛇型流道电极内的流速远大于插指型流道,所以在低比流量下蛇型流道的性能明显好于插指型流道;增加比流量或流场尺寸

11、均可提升电池的性能,由于插指型流道的临界流量大于蛇型流道,所以插指型流道性能的提升幅度明显大于蛇型流道,进而导致两种流场间的性能差异会随着比流量和流场尺寸的增加逐渐减小甚至出现性能反转。该工作不仅加深了对钒电池流场结构及其传质过程的认识,也为流场的工程化应用提供了依据。图1(a)电极域内速度等值面和(b)电极/集流体界面模拟速度等值线图图2 交错流场和蛇形流场的(a) 过电位,(b) 局域电流密度和(c) 钒浓度分布除新型流道结构设计,新南威尔士大学Gurieff等还提出了新几何形状的电极结构,可以显著增加电池内从入口到出口的电解液流速,改善在不同电荷状态下电化学物质向电极/电解质界面上反应位

12、点的传递。三维数值模拟显示,梯形和径向几何形状可以明显加速电解液在电池堆栈中的流动。此外,还提出了一种新的几何堆栈布局,该布局可以通过径向位移单元提供更高的功率输出(图3)。东方电气Yin等在活性面积为57.5 cm2的碳毡多孔电极上设计了一种叉指流场,并采用三维多物理场模型进行了模拟。数值结果中观察到“叶子”形状的离子浓度和电压分布形式。在电解液流量的主要操作范围内,与双极板内叉指流场和无流场设计相比,电极内流场的流体压降最小,系统效率最佳。该流场设计的电极大大降低了钒氧化还原液流电池的密封压力要求,具有更好的可靠性。中科院金属所Hao等进一步在炭毡电极上进行流场设计,三维数值模拟结果显示,

13、平行和叉指流道设计能够显著降低压降、均匀反应物分布、减小浓差极化(图4)。通过实验进一步证实,采用平行流道设计电池相比无流道设计电池在200 mA/cm2时的放电容量显著提高,电压效率达到78%。最后,对32 kW电堆动态模型仿真表明,高电流密度下平行流道设计的电堆系统效率较使用原毡电堆可有效提升10%以上,表明炭毡表面的流场设计在实际液流电堆的设计和放大中具有较大潜力。图3 (a)(c)不同电池结构下的速度等值线图;(d)新型结构液流电池概念示意图;(e)不同几何结构下的平均和最大极限电流密度图4 三种流场结构炭毡在不同电流密度下的浓差极化分布特性242.2 电堆力学与失效分析高功率电堆的设

14、计开发不仅需要优化流场设计,还需要考虑电堆装配的力学特性和各关键材料的受力情况。在高功率电堆的装配过程中,不当的装配应力可引起材料结构变形影响功能性甚至导致材料力学失效,如引发双极板或者导流板的开裂、隔膜的变薄褶皱甚至撕裂、密封垫的失弹等问题,导致电堆性能下降、寿命缩短和漏液。绝大多数电堆在设计和制备过程中,其内部组件的力学行为以及机械失效问题尚不清晰,力学状态对电化学特性的影响机制也尚不明确,而传统实验方法难以实现对大尺寸高功率电堆的结构进行准确有效的力学分析。针对这一问题,中科院金属所Xiong等25采用有限元分析手段,基于胡可定律构建了高功率液流电池单体电堆的三维结构力学模型,系统研究了

15、单电池和电堆中隔膜、双极板、导流板等关键组件上的应力分布特性,分析了电池中各关键组件的机械失效行为,此外还系统研究了不同密封设计对关键组件上应力分布形态的影响规律,以及电堆中的单电池组数与材料失效之间的关联性。模拟仿真结果从理论层面系统揭示了电堆装配力对电堆力学性能的影响规律,为电堆设计与装配提供了有效指导(图5)。图3(a)(c)不同电池结构下的速度等值线图;(d)新型结构液流电池概念示意图;(e)不同几何结构下的平均和最大极限电流密度图4 三种流场结构炭毡在不同电流密度下的浓差极化分布特性242.2 电堆力学与失效分析高功率电堆的设计开发不仅需要优化流场设计,还需要考虑电堆装配的力学特性和

16、各关键材料的受力情况。在高功率电堆的装配过程中,不当的装配应力可引起材料结构变形影响功能性甚至导致材料力学失效,如引发双极板或者导流板的开裂、隔膜的变薄褶皱甚至撕裂、密封垫的失弹等问题,导致电堆性能下降、寿命缩短和漏液。绝大多数电堆在设计和制备过程中,其内部组件的力学行为以及机械失效问题尚不清晰,力学状态对电化学特性的影响机制也尚不明确,而传统实验方法难以实现对大尺寸高功率电堆的结构进行准确有效的力学分析。针对这一问题,中科院金属所Xiong等25采用有限元分析手段,基于胡可定律构建了高功率液流电池单体电堆的三维结构力学模型,系统研究了单电池和电堆中隔膜、双极板、导流板等关键组件上的应力分布特性,分析了电池中各关键组件的机械失效行为,此外还系统研究了不同密封设计对关键组件上应力分布形态的影响规律,以及电堆中的单电池组数与材料失效之间的关联性。模拟仿真结果从理论层面系统揭示了电堆装配力对电堆力学性能的影响规律,为电堆设计与装配提供了有效指导(图5)。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 行业资料 > 能源电力

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服