《内生菌植物联合修复污染土壤研究进展.doc》由会员分享,可在线阅读,更多相关《内生菌植物联合修复污染土壤研究进展.doc(11页珍藏版)》请在第一文库网上搜索。
1、内生菌植物联合修复污染土壤研究进展关键词:植物修复重金属污染微生物修复摘 要:环境污染对生态系统及人类健康造成严重威胁。近年来,许多学者研究发现内生菌联合植物修复体系对修复自然环境中的重金属和有机物具有巨大的潜力。本文主要从内生菌联合植物进行污染修复的机理和应用两方面入手,介绍了内生菌接种宿主植物根、茎、叶部的几种方法及定殖的检测方法,总结了污染土壤中内生菌在植物组织内的定殖动态,以及内生菌-植物联合体系强化有机物污染和重金属污染修复效果的应用,并从内生菌调节生长因子、生物固氮和溶磷、在宿主植物体内的共代谢有机物、产生特异性酶降解有机物、提升植物对重金属抗性和降低重金属毒性几个方面解释了内生菌
2、和植物的联合修复机理。最后指出,虽然已经有许多对于内生菌联合植物修复体系的研究,但是目前两者相互作用机理尚未完全清楚,对于多种内生菌组合体系以及处理水体和大气污染的研究并不完善,这些都将成为今后的研究重点。从20 世纪开始,世界人口数量不断增多,人们的生活和生产活动也随之变化,这使得自然资源和环境资源都面临巨大的威胁。在人们生活生产活动中,许多有毒有害的污染物被排放到了自然环境中,其中包括重金属、持久性有机污染物、挥发性有机物、有机农药等。这些污染物对自然生态造成了十分严重的破坏,所以对于污染物修复和治理方法的研究日益受到关注。在众多污染物修复方法中,生物修复法因修复效果好、修复成本较低,且不
3、会产生二次污染,被广泛应用。然而,单独的植物修复或者微生物修复方法存在很多不足之处,比如修复效率低、专一性强、只能适用中低浓度污染等。而植物-微生物联合修复是一种更加有效的修复方式,它成功弥补了这些缺陷。微生物和植物联合修复不仅能使植物对污染物的耐受程度大大增加,而且还能够促进植物根系吸收土壤中营养物质,提高植株生物量,并且微生物可以协同植物从土壤中向地上部分转移污染物,并在植物体内富集、转化和利用,从而有效完成对环境污染的修复1。因此,利用植物-微生物联合修复体系,尤其是内生菌联合植物修复体系修复污染土壤的研究越来越受到关注。内生菌(Endophyte)是指定殖在植物表皮细胞层间隙或组织器官
4、内部,并与植物形成互利共生或无病害寄生的一类微生物2。越来越多的研究者发现从植物的组织内部可以分离出微生物,故将这些微生物命名为内生菌,并且开始关注内生菌与植物之间的相互作用关系。在长期的相互作用下,内生菌与宿主植物之间结成了稳定的共生关系。研究报道,内生菌能产生促生物质来促进宿主植物的生长,还能进行生物固氮和溶磷来帮助宿主植物吸收氮磷,而且内生菌还可以增强宿主植物对生长环境中污染物的抗性3-6。本研究主要归纳了近几年植物接种内生菌的方法,分析内生菌在植物体内的定殖动态特征,以及内生菌-植物联合修复污染土壤的作用机理和应用前景,并且对今后的研究方向进行了展望,为内生菌-植物联合修复污染土壤研究
5、和应用提供一定的理论依据。1 内生菌接种植物的方法接种内生菌的方法主要是通过模拟自然环境中内生菌从植物的自然孔口或者伤口入侵到植物组织内部的方法。如图1 所示,人工接种具体来说就是利用植物的自然孔口或者人为制造的切口,使得内生菌可以通过这些空隙进入到植物组织内部,从而在植物体内定殖。对于通过植物自然孔口接种来说,根部接种内生菌的主要途径是根系与土壤等摩擦造成的伤口,而茎部接种则是将茎干上的皮孔、蜜腺等作为侵入通道,叶部侵入则是将气孔、水孔等作为侵染通道进入到植物内部7。图1 内生菌接种植物的方法Figure 1 Method of inoculating endophytes to host
6、plants从表1 可以看出,人工接种植物内生菌有多种方法,灌根法、浸根法、伤根法、蘸根法等方法是对植物根部进行接种;伤茎法、涂茎法是对植物茎部进行接种;喷雾法、伤叶法等则是对植物叶部的接种方法;另外也可在种子阶段使用浸种法。但目前大多数研究主要集中在对植物根部的接种,这可能是由于植物所需营养物质主要是通过根部吸收,当土壤中内生菌在植物根部吸收营养物质时更容易侵染到植物内部7。2 内生菌在植物体内的定殖2.1 植物内生菌定殖的检测方法因为宿主植物生长在不同的生存环境中,内生菌与宿主植物之间的作用难以分析,所以目前对于内生菌在植物内部的生命活动的认识不够明晰,而对目标内生菌在宿主植物体内进行定殖
7、检测是解决这一问题的重要手段,要对内生菌在宿主植物组织内部的定殖动态进行追踪,就需要采用合适的检测方法,对其进行系统性研究,并探讨内生菌在宿主植物体内的定殖规律、内生现象和内生机制。目前,对目标内生菌在宿主植物体内的定殖检测有很多方法(表1),其中抗生素标记法是一种常用的定殖检测方法,主要是通过人工诱变等手段作用于目标内生菌,使目标菌出现具有抗高浓度抗生素的突变体,再将突变体筛选纯化出来作为标记菌株,用含高浓度抗生素的培养基进行回收检测。研究中主要使用利福平、链霉素、四环素、氨苄青霉素、卡那霉素等抗生素作为抗性标记21。大多数研究中的抗生素标记法采用利福平作为抗性标记,因为其生物防治性状较易保
8、存。抗生素标记法的优势在于简单、高效、成本低,并且能够对检测结果进行统计分析;但劣势在于不够准确、回收下限较高。姚锦爱等13运用抗生素标记法使得菌株BA-3-K(Bacillus amyloliquefaciens)获得对利福平和卡那霉素的稳定抗性,从而研究其在兰花中的定殖动态。Glandorf等15通过免疫检测验证了对利福平的抗性可以作为菌株WCS358(Pseudomonas putida)的稳定标记性状。表1 内生菌的接种及其宿主植物Table 1 The inoculation of endophytes and their host plants除此之外,还有外源基因标记法,其中荧光
9、蛋白标记(Fluorescent protein labeling)是被广泛采用的一种外源基因标记法,这种方法是将不同颜色的荧光质粒结合到其他生物中,使目标生物携带颜色荧光,并且不影响该生物的正常生命活动22。荧光蛋白标记不需要生物具备其他辅助系统,发出的荧光可以使标记菌株能够更容易被看见,从而更加方便进行追踪检测。荧光蛋白标记主要有两种转化方法,分别是热激转导和电击转化,且很多研究者致力于荧光蛋白质粒导入细菌的技术研究,使得这项技术不断发展23。对于生物来说,荧光蛋白在保持荧光时不会干扰其正常生命活动,因此荧光蛋白在生物研究过程中被许多研究者采用24-25。近年来,随着人们对绿色荧光蛋白(G
10、reen fluorescent protein,GFP)结构和功能认识的逐步深入,GFP 编码的基因已经成为最具有应用前景的标记物26-27。GFP 基因来源于水母28,表达绿色荧光蛋白。绿色荧光蛋白标记的优势在于对标记目标进行检测时可以直接进行活体观察,检测灵敏度高,且被标记目标无需加入其他引物就能够稳定发出绿色荧光。绿色荧光蛋白可用以检测在宿主植物体内标记菌株的实时生命活动,从而更加精确地进行目标内生菌的跟踪研究,与其他外源基因标记相比具有明显的优势29。但荧光蛋白标记也有许多问题亟待解决,例如对目标基因转导不成功或者荧光颜色较暗,而且引入外源基因会使细胞正常代谢过程受到影响,使得标记目
11、标的生物学效益降低,同时会因为被标记的细胞死亡后不再发出荧光而无法检测18,30。2.2 植物内生菌的定殖动态内生菌在宿主植物体内的定殖是一个空间上和时间上的动态过程。迟峰16研究了根瘤菌在水稻体内的定殖过程,结果表明根瘤菌先定殖在水稻根际表面,接种6 d 后从根部裂隙进入内部,在1014 d 扩散到相邻组织,21 d 后开始向地上部分迁移。李强等31检测侵染小麦幼苗根部的茎瘤固氮根瘤菌(Azorhizobium caulinodans)的定殖动态,结果显示该菌先通过根尖破损处定殖在根部组织细胞间隙和细胞内,随后向上迁移定殖到叶片部位。这些研究都说明了内生菌会在宿主植物组织间移动,是一个在空间
12、上的动态定殖。不仅如此,内生菌在植物体内的定殖同样也是一个时间上的动态过程,内生菌在宿主植物内的定殖菌量会随着时间变化发生动态变化。Bisht 等10在美洲黑杨的根部接种内生菌SBER3(Bacillussp.)后对其定殖菌量进行测定,结果表明这个内生菌的定殖菌量随时间延长而稳定增加。刘文韬等11研究表明,在芘污染环境下,功能内生菌株Enterobactersp.PRd5在小麦和空心菜组织内部的定殖量相较于无污染对照组有显著增加。这说明面对外部污染物的胁迫,对污染物具有抗性或者降解功能的内生菌可以更好地在宿主植物体内定殖。虽然有很多研究已经发现了内生菌在植物体内定殖的部分规律,但宿主植物的种类
13、和生长环境,以及内生菌的种类和接种方式,都会影响内生菌在宿主植物各组织器官间的迁移运动和某一时间段定殖菌数量的动态过程。这给系统总结内生菌在宿主植物体内的定殖动态规律带来了很大困难。3 内生菌联合植物修复土壤的应用3.1 对土壤重金属的修复单一的植物或微生物修复土壤重金属污染的效果不佳,而内生菌联合植物修复体系能够有效提升修复土壤重金属污染的能力。万勇32-33从镉的超富集植物龙葵中分离筛选出了内生菌DE5(Variovorax paradoxu),经实验测试能够耐受Cd 浓度为200 mgL-1,与未接种的空白对照组相比,接种了DE5的青葙根部生物量增加了125.0%,其对Cd 的富集能力增
14、强了81%。Li 等34将内生细菌K3-2(Enterobactersp.)定殖到苏丹草中能够有效增加植物的生物量和植物体内Cu2+的积累量,与未接种内生菌的对照组相比,接种了内生菌的植物对Cu2+的吸收量从49%提升至95%。Babu 等35从樟子松的根中分离得到GSB-1 菌株(Bacillus thuringiensis),该菌株可以产生促进植物生长的因子,并提升去除潜在有毒金属的效果,将GSB-1 植入宿主植物体内后,植物幼苗中的叶绿素含量、生物量,以及Cu、As、Ni、Zn 和Pb 等重金提取效果都有所增加。3.2 对土壤有机污染物的修复随着研究者们对于植物与微生物联合修复的不断探索
15、,已经发现有多个菌属能和宿主植物建立良好的相互作用关系,其中芽孢杆菌属(Bacillussp.)、假单胞菌属(Pseudomonassp.)和不动杆菌属(Acinetobactersp.)等具有降解柴油36-37、苯酚38、芘39等有机污染物的能力。大多数从植物内分离出的内生菌都具有促进植物生长的特点,并且内生菌联合植物修复所表现出的修复潜力相较于单独运用内生菌或植物修复更加具有优势40-41。Germaine 等42构建了一种萘降解内生菌株假单胞菌VM1441(Pseudomonas putida),这种菌株可以有效定殖在植物根际和根部组织内部,帮助宿主植物抵抗萘的侵害,在含有萘的环境中与未
16、接种植物相比,接种后的植物种子发芽率和植物蒸腾率都有所提高,并且有效降解了环境中的萘。Khan等43研究发现假单胞菌属PD1(Pseudomonas putida)接种到柳树和草中均可以促进宿主植物的生长,将接种植株和未接种植株栽种到含菲土壤中,接种植株对菲的去除效率提升了25%40%。田林双44将拟内生菌茎点霉菌B3(Phomopsis liquidambari)定殖到水稻中,与未接种植株一起放置到菲的环境中,发现接种植株可以在菲环境中更好生长,并且接种菌株还能增强水稻中菲的降解效果。这些研究表明接种具有降解有机物功能的内生菌可以有效强化植物对土壤有机物污染的修复能力,为修复土壤有机物污染的方法提供了重要参考。4 内生菌联合植物修复的机理如图2 所示,内生菌联合植物修复的机理主要包括两部分:一方面,植物可以为内生菌提供适宜的生长环境和