燃料电池行业市场分析.docx

上传人:lao****ou 文档编号:480509 上传时间:2023-12-11 格式:DOCX 页数:23 大小:199.57KB
下载 相关 举报
燃料电池行业市场分析.docx_第1页
第1页 / 共23页
燃料电池行业市场分析.docx_第2页
第2页 / 共23页
燃料电池行业市场分析.docx_第3页
第3页 / 共23页
燃料电池行业市场分析.docx_第4页
第4页 / 共23页
燃料电池行业市场分析.docx_第5页
第5页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《燃料电池行业市场分析.docx》由会员分享,可在线阅读,更多相关《燃料电池行业市场分析.docx(23页珍藏版)》请在第一文库网上搜索。

1、燃料电池行业市场分析一、双碳政策下可再生能源装机高增,新型能源结构转型催生储能需求1.1 全国碳排放权交易市场正式启动,电力行业成碳交易市场先行试验田火力发电是我国碳排放的主要来源。中国是全球碳排放主要贡献者,碳排放量常年占比全球碳排总量的30%,2023年碳排放超199亿吨。从排放结构角度看,电力行业为我国碳排放的主要来源,占比超过42%,几乎所有碳排放均来自于燃煤发电,占比高达99%。制造行业碳排放量其次,占比超38%,其中5大高耗能产业(石油化工及炼焦、黑色金属冶炼、非金属矿物冶炼、化工、有色金属冶炼)是重点排放对象,贡献国内制造行业90%的碳排放。交通行业考虑生产过程的碳排放以及行驶过

2、程中的碳排放,总碳排放量占比则超5%o图表2:20162023年我国发电量域构(亿k的)火力发电碳排放量仍呈现逐年上涨态势。近五年火力发电量占比逐年下降,从2017年的72%下降到2023年的71%,但是因为社会总用电量不断上升,火力发电的绝对数值仍然持续增加,从2017年的4.8万亿kWh增加到2023年的5.8万亿kWh,进而带来的碳排放量的增长,减碳形势不容乐观。电力行业成碳交易市场先行试验田。全国碳排放权交易市场于2023年7月16日正式启动交易,成为全球覆盖碳排放规模最大的碳市场。目前中国碳市场覆盖发电行业控排企业2162家,控排企业的年排放量超过40亿吨二氧化碳,占全国碳排放比例超

3、40%,从规模方面讲已超过欧盟碳市场覆盖的排放量(2019年约为19亿吨二氧化碳),成为全球“覆盖碳排放量”大的碳市场。1.2 双碳政策下能源结构转型,可再生能源装机迎来高增“十四五”可再生能源发展规划,到2025年可再生能源年发电量达到3.3万亿千瓦时左右。“十四五”期间,可再生能源发电量增量在全社会用电量增量中的占比超过50%,风电和太阳能发电量实现翻倍。即相较2023年,推算2025年可再生能源发电量占比将至少达到18%左右。2023年政策层面端再加码,国家能源局出台新型电力系统发展蓝皮书(征求意见稿),规划到2030年新能源装机占比超过40%,发电量占比超过20%o文件制定了新型电力系

4、统“三步走”发展路径,包括加速转型期(当前2030年)、总体形成期(20302045年)、巩固完善期(20452060年),并明确指出打造“新能源+”模式,加快提升新能源可靠替代能力,推动新能源成为电量增量主体。预计到2030年可再生能源发电占比超4成。根据国家统计局数据,2023年我国水、光、风可再生能源发电量合计2.3万亿千瓦时,约占总发电量的28%。根据中国2060年前碳中和研究报告结合国家政策规划,预计到2025/2030年,可再生能源装机量可依次达到15/22亿千瓦,可再生能源发电量占全社会用电的比例将达到35%44%,到2030年可再生能源年度发电量将超5万亿千瓦时。测算逻辑:根据

5、国家发改委下设全球能源互联网发展合作组织2023年3月发布的中国2060年前碳中和研究报告数据,预计至U2030年全社会总用电量将达到11万亿千瓦时,光伏、风电、水电总装机将分别达到10/8/4.4亿kW,假设光伏、风电、水电的年利用小时数分别为1400/2000/3800小时,预计光伏、风电、水电、火电在发电结构中占比将分别达到27%22%12%36%1.3 新型能源结构催生储能需求,长时储能需满足大规模应用和时间边际成本低的特性可再生能源发电具备波动性,需配储调节。储能可分为电源侧储能、电网侧储能和用户侧储能,核心均为实现电能的跨时间应用,但具体到每一侧,储能的作用又有细微不同。S17:命

6、凭&电濠向、电K倜、用户假始作用电源侧:1)平滑、调峰作用:由于光伏、风电、水电的随机性、波动性特征,电源侧需要储能以实现电力从秒级到季度的供需平衡;2)黑启动:借助储能电量带动无自启动能力发电机组。电网侧:调频:可再生能源上网电量的波动可能会造成火力发电量的波动,进而影响火力发电机组转子的转速,改变交流电的频率,因此储能还起到调节电网交流电频率的作用。用户侧:1)削峰填谷:允许用户调整用电时间,降低用电成本;2)分布式发电:推动户用可再生能源发电装置的发展;3)备用电源。电源侧日度级别和季度级别储能需满足容量高、储能时间长、大规模应用成本低的特性。电源侧的可再生能源发电因其具有随机性、波动性

7、的特点,表现为时间维度上的出力不均。秒.分钟变化:可再生能源波动性需储能平滑。光伏发电的输出与光照强度直接相关,因此其输出特性受天气影响明显。晴天光伏出力均匀且类似正态分布,多云和阴雨天因光照强度波动较大,光伏出力也会发生分钟级的变化。分钟级波动会造成发电机组转子的转速波动,进而影响到发出的交流电频率,造成系统失稳,因此需要储能装置频繁的充放电平滑分钟级的波动,因此该种储能适合动态响应快、效率较高的储能形式,如锂电池储能。小时-天变化:光伏昼夜不均需储能调峰。光伏发电出力时间集中在6:00-18:00之间,10:00-14:00为出力高峰期,夜晚出力几乎为零,一天的输出功率变化区间为0100%

8、,昼夜差别巨大,同理风力发电在有风天气和无风天气功率输出差别也很大,需要储能进行昼夜甚至跨日间的调峰,此种储能要求储能容量大,因此适合能量密度高、大规模应用成本低的储能方式,如氢储能、压缩空气储能、抽水储能。季度变化:可再生能源季节性差异需储能调峰。观察20192023年平均每月发电量情况可以发现,用电侧高峰期出现在夏、冬季,光伏发电高峰期出现在春、秋季,风力发电高峰期出现在春季以及12月,水力发电则只有夏季偏多,其余季度很少。为了解决可再生能源的季度发电不均衡现象,储能则为必要的手段。此种储能要求储能时间长、储能容量巨大,因此适合无自衰减、大规模应用成本低的储能方式,如氢储能、抽水储能。季节

9、性储能可实现长时及广域空间的能量转移,多为跨能源形式的长期储能与利用。当前电力系统中应用的如电化学储能等储能方式主要提供面向电力系统的日内调峰、调频、爬坡等,用于平抑短时(秒、分钟、小时)尺度的电力波动,难以应对长时间(周、月、年)尺度下可再生能源出力与负荷需求的电量不平衡问题。为实现长时间尺度的能量平移,平抑数日、数周乃至季节性的电量波动,参与月、季乃至年调节过程,需要采用长时间、大容量的储能技术,即季节性储能。其在电力系统电能富余时将电能转化为其他可长期存储的能量形式进行储存,实现跨能源形式的长期储能与优化利用。图衰11:高比例可再生能源电力系统年技续净负荷曲线二、氢能是大规模、长周期储能

10、最优选,是非电能源消费领域碳中和的关键2.1 氢能适用于大规模和长周期储能,大规模应用和时间边际成本低广义储能改善用电负荷季节性,终端运用方式多样化。广义储能:利用电力系统中的富余电能,将其转化为其他能源或产品,在利用环节不转换回电能而直接利用所存储能量形式的储能方式,用于进行大规模存储、转移并直接利用。广义储能仅完成电能其他形式能量的能量转换过程,终端负荷需求为多重能量形式,实现了跨能源品种的季节性储能与优化利用,主要包括电化学储能、热储能和氢储能三类。狭义储能:完成了电能-其他形式能量电能的能量转变,具有与电力系统强耦合的特点,即最终途径为上网,在2次能量转化过程增加了储能的能量损耗,包括

11、电转气、抽水蓄能与压缩空气储能等。氢储能属于广义储能,即利用电力系统如光伏和风电中的富余电能,通过电解水制氢设备将其转化为氢,并在终端应用环节直接使用氢气而非必须转换回电能上网的储能方式,间接改善了用电负荷的季节性特征,实现能量季节性转移(3-9月氢气净储存,10-2月氢气净消耗),同时也实现单位电力碳排放强度的下降(由950gkWh降低为569gkWh)。图表13:氢储能在电力Of城的应用域条氢能适用于大规模和长周期的储能,具备无自衰减、扩容成本低等特性。氢储能主要指将太阳能、风能等间歇性可再生能源余电或无法并网的弃电,通过电解水制氢的方式储存,可就地消纳、时经燃料电池进行发电或管道、长管车

12、运输等方式供应于下游应用终端。相较于抽水储能、压缩空气储能、蓄电池储能(锂电)具有无自衰减、扩容成本低、能量密度大、能源发电转移便捷等优点,凭借其无自衰减的特性,尤其适用于跨周和季度的储能。基于扩容成本低的特点,即仅需增加氢瓶即可扩充储能容量,适用于大规模的储能,在短周期内储能效率较低。储能技术呈现多样化,其中电池和氢能两者互补,共同构成主流储能方式。锂电储能:锂电储能适用于日度调峰以及调频,因为效率更高且动态响应更快。相反氢储能不适用于调频场景,因为调频场景需要的响应速度更快,并且所需储能容量小无法体现大规模氢储能的成本优势。然而针对大规模、长周期的储能场景,氢储能的优势更明显,因为氢储能无

13、自衰减,且针对大规模储能氢储能只需增加储氢设备,边际成本低。液流电池:将正负极电解液分开后各自循环的一种高性能蓄电池。电池容量取决于储存罐的大小,容量可达MW级。液流电池有多个体系,如铁铭体系,锌滨体系、多硫化钠澳体系以及全钢体系,其中全钢液流电池应用最广。目前全锐液流电池技术成熟,但离子交换膜和电解液材料成本较高。钠离子电池:钠离子电池具有与锂离子电池相似的工作原理和储能机理。钠离子电池虽然原材料成本低,但功率密度低,相较锂电池更适合储能场景而不是动力电池,当前产业链需进一步发展。大规模氢储能成本优势明显,IMWh储能下初始建设的度电成本只需1300元。测算逻辑:蓄电池储能综合了充电、储电、

14、放电三个功能于一体,然而对于氢储能系统来说则分别需要电解槽、储氢罐、燃料电池来实现以上三个功能。我们以IMWh的储能需求为测算基准,考虑氢储能系统综合效率36%,一天工作10小时,将0.28MW的碱性电解槽、8个20MPa的储氢瓶以及0.17MW的燃料电池系统看成一个日均存储电能IMWh的整体,最终测算氢储能系统初始投资的度电成本为1300元,低于磷酸铁锂电池和液流电池。用衰18:主流电化学储能方式对比参数指标蓄电池、一.,碟敢铁低电池钠离子电池液流电池能量密度(MJkg)0.50.40.4140储能据环效率85%85%80%36%月度自放电率受温度和湿度影响,产生不同程度衰减,一般在10%以

15、下无疆环寿命(次)3000200010000无初始投资成本(kWh)1500120025001300氢能长时储能边际成本低,无自衰减更适配长周期。从各类型储能技术看,蓄电池类的磷酸铁锂电池、钠离子电池和液流电池,边际扩容成本较高,需要配套扩充相应的锂电池、钠电池和钢电解液,并从资源矿中提取,价格还将随上游原材料供需波动。对比氢储能的扩容,仅需同比例增加储氢罐的数量,规模效应下,储氢罐成本下降,边际扩容简易且可移动场景储存,如盐穴储氢等,不占用发电设备所在地面积。此外,氢气作为储能在氢罐内月度损耗不到万分之一,而电池类储能电池拥有个位数自衰减率,相对氢损耗较高,例如锂离子电池自放电率每月为2%5

16、%。测算逻辑:后续扩容对于蓄电池类的磷酸铁锂电池、钠离子电池和液流电池,需要配套扩充相应的锂电池、钠电池和钢电解液,以扩建成本占总投资成本的50%测算度电扩容成本,氢储能由于扩容仅需扩充氢罐,因此度电扩容成本测算以对应扩充的氢罐价值测算。最终测算度电储能边际成本氢最低,约为120元kwh,和蓄电池类度电扩容对比最低,且随着储能容量的增大,价差将逐步拉大,100度电的储能扩容需求时,最大成本差可达11万。2.2 上游耦合风光制氢、下游多领域零碳应用,氢能终章将推动可再生能源二次装机能源使用形式可分为电力和非电能源,非电能源应用占比过半且脱碳难度高。能源使用形式可分为电力及非电能源,在使用过程中的某些领域由于特定需求,能源需要拥有更高能

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 工作总结

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服