《DSP第3章-习题答案20050330.docx》由会员分享,可在线阅读,更多相关《DSP第3章-习题答案20050330.docx(17页珍藏版)》请在第一文库网上搜索。
1、第三章习题3.1 求如下周期序列的DFS:(1) 次)的周期为周且有5)居5) = 2,3,4,5(2) x()的周期为6,且有x()线5) =2,3,4,5,2,9(3) x()的周期为8,且有 x(n)R4(h) = 2,3,4,5,2,3,4,5解:(1) X(k)R4(k) = 14,-2 + 2;,-2,-2-2j;(2) X()/?6() = 25,3.4641 j,-2 + 6.9282j,-9,-2-6.9282./,-3.4641 j(3) X(k)&*) = 28,0,-44-4J,0,-4,0,-4-4/03.2 已知 x()的周期为4且有 x()K5) = l,2,3,
2、4,另Q()=x( + 4),求:(1) DFSx(n)(2) DFSxi(n)解:(1) X(幻凡(Z) = 10,-2 + 2j-2-2-2j(2)/ x (/?) = x(/? + 4).Xk) = WkX(k) = X(k)3.3 已知x()的周期为N,且X(A) =。尸Sx5)。现令Xi(A) = X(A +。,求证:X15) = IDFS X1 (A) = W: x(n)o解:i N-Xi() = lDFSXk) = -Xl 仅)畋成N k=o1 N-l1 N-T+lW NT=五2(% +。跖欣=7; Z X(幻照g)=2x(%)%.N a=()N k=iN= Wx(n)3.4 若
3、x()的DFS为在(jfc),求证:(1)jImX(k)=DFSxo(n)(2)如果x(n)为实序列,则X(k) = X (一A)解:(1)1 r *1x0(n) = - x(n)-x (-n). DFSxo(n) = :x()一;()*)= jItnX(k)=o 2 L2(2) x()为实序列/. x (n) = x(n)N-lNT片(A) = W 2()W=N(A)/=()=03.5 若 x1(n) = ZDFSXI(/l) ,x2(n) = IDFSX2(k) , 且N-l43(jt) = 工&匕仅一/),求证:x3(n) = IDFSX3(k) = xnyxn)N /=()解:1 NT
4、3 3() = IDFSX3(k) = -XX3(k)W-tlkN k=oi N- i N-1=万工万咒刈*T)W;/V k=Q 2V Z=oi N-l1 21=小工儿(lyEWkfW?/v 1=0N k=0i N-1=荷2&(/)叫渭元2()N i=o= xI(n)x2(n)3.6若x()的周期为N,其DFS为X(A),现令该序列通过一线性移不变系统,系统的传递函数为“,输出为y(),求证:(1) y()为周期序列且周期为NN-1(2) J(n) = H(W-k )X(k)W-nkN A=o解:+x, y(n) = Z 以z)M 一加),=_Q0+8+00yn + N) = Z + N -
5、/)= Z (m)M 一 用)=y()/n=-ccw=-()w丁二02NTNT2/V-l文小)=X 乳)w/ = 5)W/ + X 元()w/n=0n=0=N= 1 + (-l/x(0) + x(l)W2; + x(2)W + + x(N -1)1dN-l=1 + (-1力25)%n=0当k为偶数时,NTN-l / 卜兄(幻=口 + (-1力门唠=2以%2=2刈不)71=0=0,当k为奇数时,(z)= o3.8 已知宠()的周期为N,其DFS为X(A)。现令:MN-1Xi(k)= x()W; , 04 A 4(MN 1), M为正整数且不为零=0试利用X(A)表示Xi(A)。解:MN-lX1(
6、Z)= 2 x(n)w71=0/V-l2/V-lMN-l=55)嗷 + 25)暇 + -,+ S x()暇=0n=N=(M-1)NM-M-lM-l=M0)f W焉+ Ml)阅)+ x(n _ i)叱犷Mn=0n=0n=0MTM-1M-1=MO) Z w嚷 + MDCv 嘿 + +x(N - 1)卬0 S 喘n=0=0n=0NT _M-l=Z而)叫小唠/!=()=0当k=lM (其中1为正整数)时,M-1二0AT nk1e)=畛9)%” =X()H=0当Aw彼(其中/为正整数)时“一1=0X1(女)=03.9 求如下有限长序列的N点DFT:(l)x(n)= 6(n)(2) x(n)= 6 (n-
7、no) x(n) = an0 no Nn=0, 1,,(N-l)解:NlN-l(1) X(k)= 1;(sksN - D=()=0N-lN-l(2) X(k) = ZxQDWf = X(Z) = 4)叱r = W,/;(0kw=n=0/:=0/:=0l-Wvf1 。心3.10 有限长序列的波形由图P3.1给出,试画出有限长序歹k/S)和工2()的波形,其中:xi(n)= x(n-2)4X2(n)= x(2-n)4图 P3.1解:3.11 图P3.2具体给出了的两个有限长序列的波形,求其6点循环卷积结果。xi(n) 0 1图 P3.2解:% () 0x2(n) = 5,6,1,2,3,43.12
8、 若 x()的长度为N,且 X(A) = OFTx(),求证:(1)Xo(k) = DFTjImx(n),(2)如果 x()为实序列,则 X(A) = X*(-A)n。解:,修()= gM5)N 7*(-叭. DFTxo(n) = 垢(叭 一/(叭叱/=jIflJX(k)=o 22(2)因为x(n)为实数,所以x”()= x(n)NTN-lX*(-Z)n = $()叫”=治外=()=03.13 已知x()的长度为N,且X(A) = D尸Tx5),求证:若x5)=t(N-1-),则 X(0) = 0;N(2)若N为偶数且x()= x(N l ),贝!1X() = 0;2解:(1)因为 x(n)
9、= x(N 1 n)当N为偶数时,令N=2M,则:x(0) = -x(N -l);x(l) = -x(N - 2);x(M-1) = -x(M)N-X(0) = W()W:=0N-1= x(0) + x + x(M -1) + x(M) + 卜 x(N - 1) = 0n=O当N为奇数时,令N=2M-1,则:x(0) = -x(N -1);x(l) = -x(N 2);-2) =-1) = 0N-lx(o)= J5)阅H=0N-l=Z%()= %(0) + %(l) + + %(M -2) + x(M -l) + x(M) + +x(N-1) = 0=0(2)因为x()= x(N l ),且N
10、为偶数,所以N Nx(0) = -l);Xl) = x(/V-2);.;X-l) = x(-)N N-nN N-l=()=oKTNkt N7 2/ iWRI 一八 1 )/TRJ - j林=x(0) + x(N -l)e-7(yv-lu + Ml) + x(N - 2)“n-2)万 + 工(一一 1)e 2+ x(_)e 222=03.14 若x()的长度为N,且X(k) = 0HTx(),求证:Xx (k) = DFTX(n) = 1(-) v, 0 V k (2)WT)W= (加).工叱,包n=O m=Om=0n=0当k=0时,N-lN-lx1(o)=x()-Xiyr = wo)/?=()=()当 0 W)= L= 0J N1 _ U/mk=()1 洪N如果n=N-k,则N-l= n二0所以,X、(k) = Nx(N k)总上得:X 小)=Nx(-k) n ,0 Q k4(N -1)3.15 已知序列 x()= a(),0 a-+G/X(Z)N h=0 /n=0=IDFTDFT () + aNIDFT X(k)= a,lRN(n) + aNIDFTX(k)所以DFTX(k* 町)1 - Cl3.16 已知x()的长度为N,且X(A) = OPTx(),现令:y()= x()N,0n()%W/ + Z x(5)n%:;