《基于DSP的直流电机控制系统设计-本科毕业论文.docx》由会员分享,可在线阅读,更多相关《基于DSP的直流电机控制系统设计-本科毕业论文.docx(59页珍藏版)》请在第一文库网上搜索。
1、基于DSP的直流电机控制系统设计摘要:直流电机由于励磁磁场和电枢磁场完全解耦,可以独立控制,因此具备良好的调速性能,出力大、调速范围宽和易于控制,广泛应用于电力拖动系统中。而随着对电机控制要求的不断提高,普通的单片机越来越不能满足对电机控制的要求,DSP技术的发展正好为先进控制理论以及复杂控制算法的实现提供了有力的支持。本设计采用美国TI公司专门为电机数字化控制设计的16位定点DSP控制器TMS320LF2407作为微控制器。该芯片集DSP信号高速处理能力及适用于电机控制优化的外围电路于一体,可以为高性能传动控制技术提供可靠高效的信号处理与控制硬件。电机的控制系统是由检测装置、主控制器、功率驱
2、动器以及上位机组成,其中DSP控制器是电机控制系统的关键部分,负责对电机的反馈信号进行处理并输出控制信号来控制电机的转动。关键词:直流电机;DSP; PID控制器;PWMThe Design of DC Motor Control System Based on DSPAbstract : The DC motor armature magnetic field and the excitation completelydecoupled, it can be independently controlled, so it has a good speed performance,contri
3、bute to a large power, widely speed range, and easy to control, so it is widely usedin electric drive systems. With the motor control required for continuous improvement,common single MCU cant meet requirements of the motor control well, DSP technologyjust for the advanced control theory and complex
4、 control algorithm implementationprovides a strong support.This design uses the American TI company specially for motor control design ofdigital 16 fixed-point DSP controller TMS320LF2407 as the controller. The chip set DSPsignal the high processing capacity and used in motor control optimization th
5、e peripheryof the circuit in a body, high performance driving control technology to provide reliableand efficient signal processing and control hardware. Motor control system is composedof detection devices, the main controller, power driver and PC components, which DSPcontroller is a key part of th
6、e motor control system , responsible for the motor feedbacksignal processing and output control signal to control the rotation of the motor.Keywords : DC motor, DSP, P1D controller, PWM第1章绪论11.1 课题概述11.1.1 课题研究的背景11.1.2 课题研究的目的及意义21.2 课题研究的现状21.3 课题研究的内容5第2章系统总体设计62.1 系统的组成62.2 DSP芯片选择62.3 TMS320LF2
7、407 DSP 控制器介绍72.4 硬件方案论证102.4.1 测速传感器的选择102.4.2 功率驱动单元方案论证112.4.3 键盘显示方案论证112.4.4 PWM实现方案论证112.5 本章小节12第3章系统硬件设计133.1 电源电路的设计133.2 功率驱动单元的设计133.2.1 PWM调速原理143.2.2 电机驱动电路153.3 速度检测单元的设计163.3.1 速度检测的方法163.3.2 速度检测电路设计173.4 按键控制单元的设计183.5 显示单元的设计203.5.1 1602液晶介绍203.5.2 显示单元接口电路设计203.6 通信单元的设计213.7 本章小节
8、22第4章系统软件设计234.1 主程序的设计234.1.1 主程序234.1.2 初始化子程序244.1.3 显刀、程序244.2 中断服务程序的设计244.2.1 PWM波发生程序254.2.2 捕获中断程序274.3 PID控制算法284.3.1 PID控制原理294.3.2 系统PID控制294.4 本章小节31第5章系统总体调试325.1 调试准备325.2 系统调试32结论34致谢35参考文献36附录错误!未定义书签。第1章绪论1.1 课题概述1.1.1 课题研究的背景电气传动是以电动机的转矩和转速为控制对象,按生产机械工艺要求进行电动机转速控制的自动化系统。根据电动机的不同,工程
9、上通常把电气传动分为直流电气传动和交流电气传动两大类。纵观电气传动的发展过程,交流与直流两大电气传动并存于各个时期的各大工业领域内,虽然它们所处的地位和作用不同,但它们始终随着工业技术而发展的。特别是随着电力电子技术和微电子学的发展,在相互竞争中完善着自身,发生着变更。由于直流电机具有良好的线性调速特性,简单的控制性能,因此在工业场合应用广泛。近代,随着生产技术的发展,对电气传动在起制动、正反转以及调速能力、静态特性和动态响应方面都提出了更高的要求,所以计算机控制电力拖动控制系统已成为计算机应用的一个重要内容。直流调速系统在工农业生产中有着更为广泛的应用。随着计算机技术和电力电子技术的飞速发展
10、,两者的有机结合使电力拖动控制技术产生了新的变化。电力电子技术、计算机技术和直流拖动技术的组合是技术领域的交叉,具有广泛的应用前景。有不少的研究者己经在用DSP作为控制器进行研究。直流调速控制系统的控制方法经历了机械式的、双机组式的、分立元件电路式的、集成电路式的、单片机式的发展过程。随着数字信号处理器DSP的出现,给直流调速控制提供了新的手段和方法。将计算机技术的最新发展成果运用在直流调速系统中,在经典控制的基础之上探讨一种新的控制方法,为计算机技术在电力拖动控制系统中的应用做些研究性的工作。用计算机技术实现直流调速控制系统,计算机的选型很多。经过选择,选取DSP芯片作为控制器。直流调速系统
11、的内容十分丰富,有开环控制系统,有闭环控制系统;有单闭环控制系统,有双闭环控制系统和多闭环控制系统;有可逆调速系统,有不可逆调速系统等。开展本课题研究的控制对象是闭环直流调速系统;研究的目的是利用计算机硬件和软件发展的最新成果,对控制系统升级进行研究;研究工作是在对控制对象全面回顾总结的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件环境的探讨,控制策略和控制算法的探讨等内容。目前,对于控制对象的研究和讨论很多,有比较成熟的理论,但实现控制的方法和手段随着技术的发展,特别是计算机技术的发展,不断地进行技术升级。这个过程经历了从分立元件控制,集成电路控制和单片计算机控制等过程。
12、每一次的技术升级都是控制系统的性能有较大地提高和改进。随着新的控制芯片的出现,给技术升级提供了新的可能。电机控制是DSP应用的主要领域,随着社会的发展以及对电机控制要求的日益提高,DSP将在电机控制领域中发挥越来越重要的作用。1.1.2 课题研究的目的及意义长期以来,直流电机一直占据着速度控制和位置控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高质高效的平滑运转的特性,尽管近年来不断受到其它电动机的挑战,但到目前为止,就其性能来说仍无其它电动机可比。在控制系统的构成上,本课题对硬件电路进行了设计,而这个硬件系统具有一定的通用性,也即可以将它作为一个硬件平台,在其它过程控制中应用
13、。另外,由DSP的特点量身订做,可以在其它的控制系统中根据不同的要求进行外围电路的设计,进而来构成硬件系统,这样既便于设计思想的物化,又使得设计系统更加紧凑,不浪费资源。本直流电机控制系统采用经典的数字增量式PID控制算法,在本文中对数字增量式PID控制的理论、设计和实现进行了较为详细的论述。1.2 课题研究的现状近些年来,随着现代电力电子技术、控制技术和计算机技术的发展,电机的应用技术也得到了进一步的发展,新产品、新技术层出不穷。除了人们己经熟悉的普通电机外,许多不同用途的特种电机也不断问世,如广泛应用于办公设备的无刷直流电机和高精度的步进电机、用于照相机的超声波电机、用于心脏血液循环系统的
14、微型电机等等。另一方面,由于应用了电力电子技术,电机的控制技术变得更加灵活,效率也更高,如变频器控制的异步电机及伺服系统即是典型的例子。在实际中,电机应用已由过去简单的起停控制、提供动力为目的应用,上升到对其速度、位置、转矩等进行精确的控制,使被驱动的机械运动符合预想的要求。例如在工业自动化、办公室自动化和家庭住宅自动化方面使用大量的电机,几乎都采用功率器件进行控制,将预定的控制方案、规划指令转变成期望的机械运动。这种新型控制技术己经不是传统的“电机控制”或“电气传动”而是“运动控制”。运动控制使被控机械实现精确的位置控制、速度控制、加速度控制、转矩或力的控制,以及这些被控机械量的综合控制。因
15、此现代电机控制技术离不开功率器件和电机控制器的发展。电机的控制器经历了从模拟控制器到数字控制器的发展。由于模拟器件的一些参数受外界因素影响较大,并且它的精度也差。所有这些都使得模拟控制器的可重复性比较差,控制效果不理想,因此调速电机的控制器逐渐朝数字化方向发展。数字控制器与模拟控制器相比较,具有可靠性高、参数调整方便、更改控制策略灵活、控制精度高、对环境因素不敏感等优点。随着现有的工业电气传动、自动控制和家电领域对电机控制产品需求的增加用户也不断提高对电机控制技术的要求。总是希望能在驱动系统中集成更多的功能,达到更高的性能。许多设备试图使用8位或是准16位的微处理器实现电机的闭环控制,然而它们的内部体系结构和计算功能都阻碍了这一要求的实现。例如,在很多领域(如工业、家电和汽车),用户希望使用效率高且去掉霍尔效应传感器的电机。这种电机的控制可以通过使用先进的电机控制理论、采用高效的控制算法来实现。但是这可能超出上述微处理器的计算能力。使用高性能的数字信号处理器(DSP