《工业固体废弃物在阻燃材料领域的应用进展.docx》由会员分享,可在线阅读,更多相关《工业固体废弃物在阻燃材料领域的应用进展.docx(8页珍藏版)》请在第一文库网上搜索。
1、随着工业化进程的不断推进,固体废弃物(简称固废)的产生量和堆积量日益增多。目前,我国大宗固废的累计堆存量约600亿t,年新增堆存量近30亿t如此大量的固废不仅导致资源的极大浪费还对生态环境造成了巨大破坏。因此,有效、无害地处理固废对于环境保护十分重要。固废的处理方法一般有综合利用、处置、贮存和倾倒丢弃等。综合利用是通过回收、加工、循环、交换等方式从固废中提取有用的资源;处置是将固废焚烧或者置于符合环境保护规定要求的场所,并不再回用,常用的处置方法有填埋、焚烧、专业贮存场(库)封场处理、深层灌注、回填矿井等。”十三五期间,我国各类大宗固废综合利用量约130亿t,节省土地超过6万hm3固废的再利用
2、提供了大量资源综合利用产品,促进了煤炭、化工、电力、钢铁、建材等行业的高质量发展,环境效益和经济效益显著,对缓解我国部分原材料紧缺、改善生态环境发挥了重要作用。但尾矿、磷石膏、钢渣等固废利用率仍较低,其堆存占用了大量的土地资源,存在较大的生态环境安全隐患。工业固废大多含有硅、铝、镁等阻燃元素,在阻燃材料领域具有一定的应用潜力。基于此,本文综述了工业固废在阻燃材料领域的应用现状,以期为提高固废利用率及促进其在阻燃材料领域的应用提供参考。1工业固废在阻燃材料领域的应用现状1.1 粉煤灰粉煤灰是燃料燃烧后形成的细小颗粒物,一般含有硅、铝、铁、钙、钱、锂等元素。粉煤灰是一种环保型复合材料阻燃添加剂,可
3、替代如卤代有机化合物等传统阻燃添加剂。NGUYEN利用硬脂酸对粉煤灰进行改性,以提高粉煤灰与环氧树脂的相容性(见图1),并制备了不同粉煤灰含量的复合材料,研究发现:相较于未改性前,改性后的复合材料抗拉强度、抗弯强度和冲击强度均有明显提升,而阻燃性能提升最为明显;当改性粉煤灰添加量为20%时,复合材料的氧指数为23.2%、燃烧速率为8.09mm/min,符合194HB规定的消防标准。此外,NGUYEN还研究了粉煤灰与多壁碳纳米管(MWCNTS)的协同作用,以增强环氧树脂/聚磷酸铉(APP)/季戊四醇(PER)/三聚氧胺体系的涂层,发现当粉煤灰添加量为10%和MWCNTS添加量为1%时,复合材料可
4、达到U1-94V-O等级且极限氧指数(1o1)提高至27.2%o1I等以粉煤灰为原料采用共沉淀法成功合成了Mg-A1-Fe三元阻燃层状双氢氧化物(1DH)并应用于乙烯乙酸乙烯酯共聚物(EVA),研究发现,EVA复合材料的1OI最高为28.5%,复合材料的释热速率、质量损失均显著降彳氐且表现出了良好的抑烟性能和热稳定性。I5“UeFy31RyaAO图1固化后粉煤灰颗粒在环氧树脂中的分布示意图1.2 钢渣钢渣是炼钢过程中产生的工业废料,是一种由多种矿物和玻璃态物质组成的集合体。韩懿等将钢渣(SS)分别与传统阻燃剂次磷酸铝(AHP)、聚磷酸铁(APP)和三聚氧胺焦磷酸盐(MPP)复配后用于硬质聚氨酯
5、泡沫(RPUF)的改性,研究发现:上述复配材料的掺入均具有提高RPUF热稳定性、降低热释放的作用;当SS与上述3种阻燃剂的添加量之比均为1:1时,所得RPUF复合材料的总热释放量(THR)分别较纯样降低了24.1%、29.72%x44.44%o此外,TANG为提高SS与RPUF的相容性,用9,Io-二氢-9-氧杂-IO-磷杂菲-Io-氧化物通过溶液-凝胶反应对钢渣进行了表面改性(见图2),将改性钢渣(mSS)与可膨胀石墨(EG)一起掺入RPUF后发现,mSS在增加RPUF膨胀率的同时还降低了其导热系数,当mSS和EG添加量均为10%时,RPUF复合材料的热释放速率峰值(PHRR)及其THR分别
6、降低了55%、47%o图2含磷硅烷改性钢渣的制备路线马帅等以钢渣为原料合成了磷酸根型水滑石(P-1DHS),同时利用十二烷基硫酸钠(SDS)对其改性得到了改性水滑石(SDS-P-1DHs),将P-1DHs、SDS-P-1DHs分别与EG一起加入到乙烯-醋酸乙烯共聚物(EVA)内,当P-1DHsxSDS-P-1DHs的添加量均为30%、EG添加量为5%时,1OI达到了26.9%和27.5%,U1-94测试均达到V-O等级。1.3 尾矿1.3.1 铁尾矿铁尾矿是铁矿石经选矿后剩余的废渣。YANG等研究了铁尾矿(ITS)添加量对RPUF阻燃性能的影响,由于S为金属氧化物的混合物,所以阻燃效果有限,但
7、ITS抑制了RPUF基体的裂解,提高了材料的热稳定性并对材料的热释放和烟气释放具有一定的抑制作用。YANG等将ITS与传统阻燃剂(AHP、APP.EG)复配了阻燃RPUF,研究发现:由于阻燃剂热解产生的酸性物质与ITS促进了RPUF成炭并相互反应生成了金属离子-炭质复合炭层,从而有粉是高了复合材料的阻燃性能;在1:1的复配比例下,RPUFITSAPPxRPUF/ITS/AHP和RPUF/ITS/EG的1O1分别提高至22.7%、24.4%、24.9%o刘新亮以铁尾矿为原料通过酸解、PH调节制备了铁矶、Mg(OHb和Ca(OHM见图3),并将其应用于热塑性聚氨酯(TPU)阻燃,研究发现:制备的氢
8、氧化物体系对TPU复合材料的热释放均具有显著的抑制作用,TPMg(0H)2xTPCa(0HRTPU/铁机/APP以及TPU/铁帆/AHP的THR分别比纯样降低了17.86%、18.51%、54.55%、46.75%,铁帆与APP和AHP的协效还能有效降低TPU复合材料的烟气毒性。3啰pH13-10pH-3.0-3.5pH5.O-5.5PH=IO.0-1IQpH-120iax图3铁尾矿制备金属氢氧化物流程图13.2磷尾矿ZHOU等利用硅烷偶联剂KH550对磷尾矿进行了表面改性,将改性磷尾矿(MPT)与AHPx膨胀型阻燃剂(IFR)组成了TPU阻燃体系,研究发现:当MPT添加量仅为30%时,TPU
9、复合材料的各阶段热稳定性均有所提高,700OC残炭量由1.2%提升至27.1%PHRR、产烟率(SPR)和SF分别降低了51.0%、26.3%、59.8%;弓I入阻燃齐IAHP、IFR后发现,当用磷尾矿部分取代阻燃剂后,PHRR分别降低了91.2%、91.0%,THR分别降低了70.0%、67.6%,且同样具有显著的减烟抑毒效果。此外,ZHOU等还以磷尾矿为原料利用酸解反应和水热法合成了花状和片状氢氧化镁阻燃剂,氢氧化镁的物理阻隔效应、催化成炭效应、稀释和冷却效应有效降低了TPU材料的火灾危险,同时还发现片状氢氧化镁表现出了更好的抑烟效果。WU等以磷尾矿(PTS)为原料,采用共沉淀法制备了Ca
10、-Mg-A1层状双氢氧化物(1DHS-I)和Ca-Mg-A1-Fe层状双氢氧化物(1DHS-2),研究发现,与纯环氧树脂(EP)相比,1DHs-I和1DHs-2的添加量均为8%的EP复合材料的1OI从25.8%分别增至29.3%和29.9%,总烟气产生量(TSP)分别降低了64%和85%,THR分别降低了28%和63%oZHANG等采用共沉淀法合成了二乙熔三胺五亚甲基瞬酸(DTPMP)插层三金属层双氢氧化物(TM-DTPMP1DHS),研究发现,当TM-DTPMP1DHs的添加量为8%时,EP复合材料的1OI由19.2%提高至30.2%,PHRR和THR分别降低了43%和60%,SPR和TSP
11、分别降低了64%和83%oTU等对磷尾矿经硫酸酸解-水热法合成了花状氢氧化镁(MH)(见图4),然后采用金属有机框架(MoF)进行改性并采用溶液共混法制备了TPU复合材料,锥形量热仪实验结果表明,与纯TPU相比,MH(O)MOF-P可显著降低TPU复合材料的热释放率(HRR)、SPR、总排烟量(TSR)、CO释放率和CO?释放率。图4MH(a,b)和MH(Q)MOF-Pfcd)的扫描电镜照片13.3铸尾矿铝尾矿主要由矿石矿物和围岩矿物组成,由于我国铝矿品位较低,导致矿石选别后产生了大量的尾矿,其量占原矿量的90%以上。王飞跃等将铝尾矿进行洗涤、粉碎和表面改性后制成了铝尾矿填料并与膨胀型阻燃剂I
12、FR(APP-PERME1)组成膨胀阻燃体系,研究发现,当铝尾矿的添加量为3%时,EP/IFR/TIF复合材料的质量损失、炭化体积、火焰传播比值相比于EP/IFR试样分别降低了12.5%、36.4%.59.4%,且TIF能促进更多的P-O-C交联结构和C-C芳香结构的形成,从而有效增强炭层结构的致密性,发挥物理阻隔作用。WANG等通过原位聚合制备了聚毗咯修饰的铝尾矿颗粒(PPY-TTF)(见图5),研究发现PPY-TTF对增强膨胀型阻燃涂料的阻燃性和抑烟性具有良好的协同作用;由于PPY-TTF在凝聚相中形成了更多的交联和芳香结构,从而增强了炭的屏障效应,PPY-TTF添加量为3%的阻燃涂料的火
13、焰扩散等级、总热释放、烟密度等级分别较未添力口PPY-TTF分另那划氐了74.3%、30.7%、32.4%o图5PPY-TTF合成路线1.4 赤泥赤泥是铝土矿中提取氧化铝后排出的固体废弃物,其中氧化铁的含量较多。贾垂轩以赤泥为原料,引入碳酸根离子和镁离子并利用焙烧复原法制备了水滑石(1DH)(见图6),将其应用于EVA并与阻燃剂氢氧化铝、氢氧化镁进行比较,结果验证了赤泥基水滑石作为阻燃剂、抑烟剂的可行性。J1A等以赤泥为原料合成了Mg-A1-Fe三元层状双氢氧化物(1DH),制备了阻燃、热稳定的乙烯-醋酸乙烯酯/层状双氢氧化物/石墨粉(EVA/1DH/GP)复合材料,研究发现与纯EVA相比,E
14、VA/1DH/GP的PHRR和平均热释放速率(AHRR)分别降低了81.1%和54.2%,阻燃性能明显提高;1DH和GP的结合有助于形成致密的炭层,增强其凝聚相阻燃效应,从而显著减少EVA复合材料的放热,提高防火安全性。钱翌等利用磷酸二氢钱对赤泥基层状双金属氢氧化物进行了改性,将其用于TPU后发现复合材料的PHRR和THR分别降低了55.21%和63%o赤泥基1DH主要通过产生水蒸气、CO2等不燃气体稀释空气中的氧浓度,并且其所含的Fe八A1”和Mg?,可以促进聚合物成炭,同时生成的金属氧化物增强了炭层的屏障能力从而发挥阻燃作用。11等采用燃烧-水热法用赤泥合成了Mg-AI-Fe三元层状双氢氧
15、化物(1DHS)并与APP、红磷、三聚氧胺组成协效体系,发现上述协效体系促进了致密炭层的形成,从而有效抑制了烟气?口热量的释放。另外,1I等使用盐酸活化赤泥,然后采用共沉淀法合成了Mg/AI/Fe1DHs,在合成过程中将十二烷基硫酸钠(SDS)插在1DH的中间层并用三乙氧基硅烷(KH550)对1DH表面进行改性,将其应用于EVA后发现,复合材料具有较高的热稳定性和良好的阻燃和抑烟性能。图6赤泥制备水滑石流程图1.5 其他固废孙英娟等将炼铁矿渣(S1ag)粉碎并过IOO目筛后与三氧化二睇(SbQj组成阻燃复配体系,研究发现,相比于PVC/SbQ,PVC/SbQJs1ag的热释放和烟气释放明显降低
16、,点燃时间增加了7s,火灾性能指翔是高至2.4倍,火灾危险指数降低至2/3。钱翌等以煤砰石为原料,采用共沉淀法制备了XMg-):/XAb)从1:1到5:1的类水滑石,研究发现,当/XMg,):XAb.)=3:1时,EVA复合材料的阻燃性能最好OI达到28.3%,质量损失速率明显降低且抑烟效果明显增强,比光密度(SOD)始终保持在80%以上。赵丹等使用氧化镁烟气脱硫固废制备了类水滑石(HT1CS),将其与APP共同制备阻燃硬质聚氨酯泡沫(RPUF),当APP添加量为40%和HT1cs添加量为10%时,RPUF复合材料的1OI可达34.2%,PHRR降低了39.3%且最大烟释放速率仅为0.18mso2存在的问题近年来,随着可持续发展及绿色环保观念的普及和深入,工业固废基阻燃剂得到迅速发展并已成功应用于聚合物阻燃。然而,工业固废基