《余弦定理与正弦定理的等价性.docx》由会员分享,可在线阅读,更多相关《余弦定理与正弦定理的等价性.docx(5页珍藏版)》请在第一文库网上搜索。
1、余弦定理与正弦定理的等价性甘肃省合水县第一中学薛树英邮编:745400 信箱:xshy2008126余弦定理与正弦定理是解斜三角形的依据,二者是互通的,是等价的.由余弦定理推得正弦定理中,由 cZm/+a?-IcibcOSCr得a2-b2-c2cos C =2absinC=Vl-cos2C =+b)2V 2abJ(a+b+c)(a+b-c)(a-b+c)(-a+b+c)2ab2js(s-a)(s-b)(s-c),其中 _ a + + c ab2cabc _ sinC 2/s(s-a)(s-b)(s-c)同理,有b _abcsinB 2js(s-a)(s-b)(s-c)a _abcsinA 2s
2、(s-a)(s-b)(s-c)abc sinA sinB sinC由正弦定理推得余弦定理AABC中,设其外接圆半径为R,有a b c=2RsinA sinB sinCa=2RsinA , b=2RsinB , c=2RsinCa2 +b2 -2abcosC=(2Rsin A)2 +(2RsinB)2-2 2RsinA 2RsinB - cosC=4R2 (sin2 A+ sin2B- 2 sinAsinBcosC)=4R2fsin2A+ sin2B+ 2sinAsinBcos(A + B)4 R2 (sin2 A+ sin2B+ ;sin 2 Asin 2 B-2sin 2Asin2B)c2
3、= (2 RsinC) = 4R2sin2(A+ B) = 4R2(sinAcosB+cosAsinB)2=4R2(sin2Acos2B+ cos2Asin2B+sin 24sin 2B)= 4R2sin2A(l-sin2B) + (l-sin2A)sin2B+sin 2 Asin 2B)2=4 R2(sin2A+ sin2B+ ; sin 2 Asin 2B-2 sin2Asin2B)例题在,C中,/八5。,心向COSC-亚c2 =q2 +Z72 -2ahcosC(I)求5c边的长;(ID若点I)是AB的中点,求线段CD的长度.(2006年全国高考数学H文科17题)解法1 : ( I )由
4、26,得 J5 cosC= sinC=55sinA=sin18() -(45 +C)=sin(45 +C)= (cosC + sinC)2也(2也也屈由正弦定理知,T - io. a回义巫fiC= AOsinA = 10_ = 3sinB V2(II)由正弦定理,得小阻 = 2sinB V22也可以根据由余弦定理得,/IB2 =BC2 + /IC2-2BCMCcosC2 石=18 +10-2x372 xVl()x- = 4AB = 2-BD = 1 AB = 1 .2由余弦定理知, CD2 =BD2+BC2-2 BD- BC, cos B= l + 18-2xlx3V2x = 132CD =
5、713-解法2: ( I )由正弦定理知,AV10 XAB=ACsinC=5 =2sinB V2T由2加,倚石.cosC= sinC=55cosA=cosI80 -(45 +C)=-cos(45 +C)=- (cosC + sinC)V2一骂.巫510. BC2 = AB2 + AC2- 2A B- AC- cos Ar JlO= 4 + 10-2x2x710x(-) = 1810(II)求AB时,应用余弦定理.BC2 = AB2+AC2-2ABACcosA/. 18 = AB2+10 + 2AB即 AB2+2AB-8 = 0AB = 2,或 AB = -4(舍)BD = j AB = 12然后,应用余弦定理求得“cD = g解法3: ( I )同解法2.(II)求AB时,仍然应用余弦定理.AC2 =AB2+BC2-2AB- BC-cos B10=AB2+18 + 2AB. AB = 2,或 AB = 4即 AB26AB+8 = 0当 AB = 2时,BI) 1AB21,根据余弦定理求得,CD = V13 -当AB = 4时,在AABC中,csB = R = 3,csC = 逅 =与22V25 V5cosBC, AOAB,而 AC = /0,AB=4 显然不成立.