《2016年浙江省舟山市中考试题【jiaoyupan.com教育盘】.doc》由会员分享,可在线阅读,更多相关《2016年浙江省舟山市中考试题【jiaoyupan.com教育盘】.doc(20页珍藏版)》请在第一文库网上搜索。
1、 优秀领先 飞翔梦想 成人成才2016年浙江省舟山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分12的相反数是()A2B2CD2在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()ABCD3计算2a2+a2,结果正确的是()A2a4B2a2C3a4D3a2413世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A42B49C76D775某班要从9名百米跑成绩各不相同的同学中选4名参加4100米接力赛,而这9名
2、同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A平均数B中位数C众数D方差6已知一个正多边形的内角是140,则这个正多边形的边数是()A6B7C8D97一元二次方程2x23x+1=0根的情况是()A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根8把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A120B135C150D1659如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()ABC1D10二次函数y=(x1)2+5,当mxn且mn0时,
3、y的最小值为2m,最大值为2n,则m+n的值为()AB2CD二、填空题:本大题共6小题,每小题4分,共24分11因式分解:a29=12二次根式中字母x的取值范围是13一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为14把抛物线y=x2先向右平移2个单位,再向上平移3个单位,平移后抛物线的表达式是15如图,已知ABC和DEC的面积相等,点E在BC边上,DEAB交AC于点F,AB=12,EF=9,则DF的长是多少?16如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(1,0),ABO=30,线段PQ的端点P从点O出发,沿
4、OBA的边按OBAO运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为三解答题:(本题有8小题,第17-19题每题6分,第20.21题每题8分,第22,23题每题10分,第24题12分,共66分)17(1)计算:|4|(1)02(2)解不等式:3x2(x+1)118先化简,再求值:(1+),其中x=201619太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面ABC如图2所示,BC=10米,ABC=ACB=36,改建后顶点D在BA的延长线上,且BDC=90,求改建后南屋面边沿增加部分AD的长(结果精确到0
5、.1米)(参考数据:sin180.31,cos180.95tan180.32,sin360.59cos360.81,tan360.73)20为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)根据图中信息,解答下列问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议21如图,已知一次函数y1=
6、kx+b的图象与反比例函数y2=的图象交于点A(4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1y20时,写出x的取值范围22如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的55网格中,点A,C,B都在格点上,在格点上画
7、出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长23我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,DAB=ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在RtABC与RtABD中,C=D=90,BC=BD=3,AB=5,将RtABD绕着点A顺时针旋转角(0BAC)得到RtABD(如图3),当凸四边形ADBC为等邻角四边形时,求出它的面
8、积24小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线OBC所示,行驶路程s(m)与时间t(s)的关系也
9、满足s=at2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度2016年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分12的相反数是()A2B2CD【考点】相反数【分析】根据相反数的意义,只有符号不同的数为相反数【解答】解:根据相反数的定义,2的相反数是2故选:A2在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()ABCD【考点】轴对称图形【分析】根据轴对称图形的概念进行判断即可【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形
10、,故选项错误故选:B3计算2a2+a2,结果正确的是()A2a4B2a2C3a4D3a2【考点】合并同类项【分析】根据合并同类项法则合并即可【解答】解:2a2+a2=3a2,故选D413世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A42B49C76D77【考点】有理数的乘方【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方依此即可求解【解答】解:依题意有,刀鞘数为76故选:C5某班要从9名百米跑成绩各不相同的同学中选4名参加4100米接力赛,
11、而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A平均数B中位数C众数D方差【考点】统计量的选择【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断【解答】解:知道自己是否入选,老师只需公布第五名的成绩,即中位数故选B6已知一个正多边形的内角是140,则这个正多边形的边数是()A6B7C8D9【考点】多边形内角与外角【分析】首先根据一个正多边形的内角是140,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可【解答】解:360=36040=9答:这个正多边形的边数是9故选:D7一元二
12、次方程2x23x+1=0根的情况是()A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根【考点】根的判别式【分析】先求出的值,再根据0方程有两个不相等的实数根;=0方程有两个相等的实数;0方程没有实数根,进行判断即可【解答】解:a=2,b=3,c=1,=b24ac=(3)2421=10,该方程有两个不相等的实数根,故选:A8把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A120B135C150D165【考点】圆心角、弧、弦的关系;翻折变换(折叠问题)【分析】直接利用翻折变换的性质结合锐角三角函数关系得出BOD=30,再利用弧度与圆心角的关系得
13、出答案【解答】解:如图所示:连接BO,过点O作OEAB于点E,由题意可得:EO=BO,ABDC,可得EBO=30,故BOD=30,则BOC=150,故的度数是150故选:C9如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()ABC1D【考点】矩形的性质;全等三角形的判定与性质;勾股定理【分析】过F作FHAE于H,根据矩形的性质得到AB=CD,ABCD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论【解答】解:过F作FHAE于H,四边形ABCD是矩形,AB=CD,ABCD,AECF,四边形AECF是平行四边形,AF=CE,DE=BF,AF=3DE,AE=,FHA=D=DAF=90,AFH+HAF=DAE+FAH=90,DAE=AFH,ADEAFH,AE=AF,=3DE,DE=,故选D10二次函数y=(x1)2+5,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为()AB2CD【考点】二次函数的最值【分析】结合二次函数图象的开口方向、对称轴以及增减性进行解答即可【解答】解:二次函数y=(x1)2+5的大致图