用样本的频率分布估计总体分布 教学设计.docx

上传人:lao****ou 文档编号:164481 上传时间:2023-05-02 格式:DOCX 页数:4 大小:41.12KB
下载 相关 举报
用样本的频率分布估计总体分布 教学设计.docx_第1页
第1页 / 共4页
用样本的频率分布估计总体分布 教学设计.docx_第2页
第2页 / 共4页
用样本的频率分布估计总体分布 教学设计.docx_第3页
第3页 / 共4页
用样本的频率分布估计总体分布 教学设计.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《用样本的频率分布估计总体分布 教学设计.docx》由会员分享,可在线阅读,更多相关《用样本的频率分布估计总体分布 教学设计.docx(4页珍藏版)》请在第一文库网上搜索。

1、2.2.1用样本的频率分布估计总体分布(2课时)一、三维目标:1、知识与技能(1)通过实例体会分布的意义和作用。(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。2、过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。3、情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。二、重点与难点重点:

2、会列频率分布表,画频率分布直方图、频率折线图和茎叶图。难点:能通过样本的频率分布估计总体的分布。三、教学设想【创设情境】在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研窕、学习的主要内容用样本的频率分布估计总体分布(板出课题,【探究新知】K探究1:Ps我国是世界上严重缺水的国家

3、之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等。因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况。(如课本P56)分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格

4、改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。表格则是通过改变数据的构成形式,为我们提供解释数据的新方式。下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。可以让我们更清楚的看到整个样本数据的频率分布情况。一频率分布的概念:频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差(2) 决定组距与组数(3) 将数据分组(4) 列频率分布表(5) 画频率分布直方图以课本P56制定居民用水标准问题为例

5、,经过以上几个步骤画出频率分布直方图。(让学生自己动手作图)频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势。(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。R探究见同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图不同的看法进行交流)接下来请同学们思考下面这个问题:R思考X:如果当地政府希望使85%以上的居民每

6、月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见课本P.)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)二频率分布折线图、总体密度曲线1 .频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。2 .总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。(见课本心)K思考1 .对于任何一个总体,它的密度曲线是不是一定存在?为什么?2 .对于任何一个总体,它的密度曲线是否可以被非常

7、准确地画出来?为什么?实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.茎叶图1 .茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。(见课本P6I例子)2 .茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录

8、与表示。(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。【例题精析】R例下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)区间界限122,126)126,130)130,134)134,138)138,142)142,146)人数5810223320区间界限146,150)150,154)154,158)人数1165(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134Cm的人数占总人数的百分比.。分析:根据样本频率分布表、频率分布直方图的一般步骤解题。解

9、:(1)样本频率分布表如下:分组频数频率122,126)50.04126,130)80.07130,134)100.08134,138)220.18138,142)330.28142,146)200.17146,150)110.09150,154)60.05154,158)50.04合计1201(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134Cn1的人数占总人数的19%.(2)由图可估计该学校高一学生的达标率约为100%=88%17+15+9+32+4+17+15+9+3(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内。【课堂精练】Pei练习1.2.3【课堂小结】1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。【评价设计】1.P72习题2.2A组1、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 汇报材料

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服