《生物质转化利用技术的研究进展.doc》由会员分享,可在线阅读,更多相关《生物质转化利用技术的研究进展.doc(12页珍藏版)》请在第一文库网上搜索。
1、生物质转化利用技术的研究进展摘要:生物质能源和石油替代产品的研究、开发和应用,是保障能源供应、减少对化石能源的依赖、解决未来能源问题的有效途径。综述了目前国内外生物质能的转化利用技术,主要包括直接燃烧技术、生化转化技术(发酵和厌氧性消化)、热化学转化技术(气化、热解)、液化技术、致密成型技术、超临界流体转化技术等;介绍了生物质转化技术的应用,包括生物质气化发电、气化制氢、热裂解制氢、发酵法生产燃料乙醇、热裂解制生物油、固化成型制固态燃料、堆肥发酵制肥料、厌氧性消化生产沼气、催化裂解生产生物燃料等。对未来的生物质能利用技术的发展进行了展望。目前随着全球煤、石油、天然气等化石资源的不断消耗,生物质
2、能源的开发和利用愈来愈受到人们的关注。生物质是一切直接或间接利用的通过绿色植物光合作用形成的有机物质。它包括除化石燃料以外的植物、动物和微生物及其排泄和代谢物等。生物质能源是指太阳能用化学能的形式储存在生物当中的一种能量,植物发生光合作用,通过直接或间接的方式而形成的能量,其载体是生物质。生物质能源的用途比较广泛,如以玉米,小麦等植物为原料加工制成的可用于汽车的乙醇燃料。随着国内外对生物质能源和石油替代产品的不断研究及其相关技术的开发应用,现已具备了大规模工业化生产的条件。相关的专家、学者们认为,作为石油替代产品的生物质能源如聚酸乳、生物乙烯、乙醇燃料等产品,有希望成为中国未来的石油替代品和新
3、能源,其不但不会对中国的粮食安全造成威胁,还会对中国的粮食生产起到促进作用,同时还会极大地促进中国能源业的安全、稳定、快速的发展。1生物质能的特点生物质是一种复杂的材料,主要由纤维素、半纤维素和木质素组成,以及少量的单宁酸、脂肪酸、树脂和无机盐。这种可再生的原材料具有很大的潜力,可用于发电和生产高附加值化学品。生物质能源作为一种新型可再生能源,与其他的化石能源相比,具有许多优点:1)可再生性。生物质能由于通过植物的光合作用可以再生,与煤、石油、天然气等化石能源相比,是一种可再生能源,而且资源丰富,可保证能源的永久利用。2)低污染性。生物质中的硫、氮等非金属含量低,燃烧产生的含硫化合物、氮氧化物
4、较少。由于生物质在生长时吸收的二氧化碳与排放的二氧化碳的量相同,因此在用做燃料时,对大气的二氧化碳净排放量几乎为零,可有效地减少二氧化碳的排放和酸雨现象的产生。3)总量十分丰富。生物质能是仅次于煤炭、石油和天然气的世界第四大含碳能源。生物质能源植物(简称“生物质资源”)分布面积十分广泛,随着农林业的不断发展,生物质资源将越来越多。生物质资源通过规模化种植能迅速增长,可保证其产量。4)安全性。生物质能源使用相当安全,不会发生爆炸、泄漏等重大的安全事故。5)广泛应用性。在沼气、固体燃料压缩成型、热解气化生产燃气、发电、燃料酒精的生产、生物柴油等国民经济的多个领域均有应用。就当前的国际形势而言,迫切
5、需要采用非常规的可持续能源,来满足日益增长的对液体燃料的需求。使用生物质用于生产生物柴油、生物燃料和乙醇正在接近商业化。生物质能源的开发,在保障能源供应、减少对石油市场的依赖及稳定经济发展等方面将发挥积极作用,是解决未来能源问题的有效新途径。许多专家指出,21世纪将是生物质能源大展宏图的时代。2生物质能的利用技术生物质最大的优势在于它是唯一含碳的可再生资源,可通过热化学转化法、生物化学转化法及光化学转化法等制取液体和气体燃料,涉及热解、气化、液化、成型及直接燃烧等技术。可获得便于储存运输、方便使用的清洁型燃料,其实物形态为液体、固体和气体。图1列出了各种生物质能利用技术。2.1生物质直接燃烧技
6、术2.1.1生物质直接燃烧流化床技术生物质直接燃烧技术主要分为炉灶燃烧、锅炉燃烧和致密成型技术。涉及到的技术有生物质直接燃烧流化床技术和生物质直接燃烧层燃技术。国外许多公司如美国爱达荷能源产品公司、美国B&W、美国CE公司等采用流化床技术开发的流化床发电锅炉处理生物质已具有相当的规模和一定的运行经验。瑞典以树枝、树叶等作为大型流化床锅炉的燃料加以利用,锅炉的热效率达到了80。丹麦将干草与煤按照6:4的质量比采用高倍率的循环流化床锅炉进行燃烧,热功率达80MW,锅炉的出力为100th。刘皓、林志杰等根据稻壳的物理和化学性质,并且考虑到其燃烧特性,对传统的流化床燃烧锅炉进行了改进;采用独特的燃烧和
7、配风方式,开发出了具有流化性能好、燃烧稳定、不易结焦等优点的锅炉。陈冠益等与无锡锅炉厂合作设计开发了不但输送量大,而且输送安全的气力输送装置输送稻壳,用于35th燃稻壳流化床锅炉。该输送装置独特的设计不仅避免了给料中断现象,减少了床层埋管的磨损和受热面积灰;同时还扩大了锅炉的燃料适用范围。将来生物质锅炉的发展取决于化石燃料市场和关于生物质市场的决策。2.1.2直接燃烧层燃技术2.1.2.1农林废弃物开发利用技术生物质层燃技术在农林业废弃物的开发利用方面有广泛的应用。丹麦的ELSAM公司出资改造的Benson型锅炉不仅能够使秸秆、木屑等物料在炉栅上充分的燃烧,并且其炉膛和管道内还设置了纤维过滤器
8、用来减轻烟气中的有害物质对设备的腐蚀和磨损。经过实践运行之后,证明改造后的生物质锅炉运行稳定,且具有良好的社会和经济效益。翟学民根据甘蔗渣的燃烧机理,研制出了一种燃烧室与辐射受热面分开布置的对甘蔗渣及时着火和稳定燃烧都有利的闭式炉膛结构的甘蔗渣锅炉。由于甘蔗渣在生物质燃料中具有一定的代表性,因此该炉型对树皮、稻壳等生物质燃料具有一定的通用性。何育恒开发设计出了结构新颖,能够燃烧木屑、木粉及树皮等废料的层燃锅炉。该锅炉能保证木屑、木粉的充分燃烧;能够防止木粉爆燃;锅炉为负压燃烧,确保木粉在燃烧时不向炉外喷火,为开发设计燃木屑、木粉等林业废弃物的锅炉提供了宝贵的经验。2.1.2.2城市生活垃圾焚烧
9、技术随着城市建设的发展和社会的进步,城市生活垃圾的产量呈逐年递增趋势。因此,开发新型垃圾焚烧处理技术非常必要。自上世纪以来,除上海浦东御桥以外,我国的很多城市如北京、广州、厦门等都在进行千吨级垃圾焚烧厂的建设,垃圾焚烧不仅可以减少环境污染,还能节省大量土地资源。因此,该项技术成为大城市生活垃圾处理的一项主流技术。但垃圾焚烧技术在尾气处理、二次污染和焚烧炉燃烧效率等方面还需要结合我国的基本国情进行不断的改进和完善。由于焚烧技术存在的诸多缺点,国内外不断地进行研究探索,开发了采用厌氧消化技术来处理城市生活废弃物的工艺,与传统的焚烧技术相比,该工艺在处理效率、处理成本、资源回收利用等方面均有很大的优
10、势。目前该项工艺在城市的废物处理中已经有了广泛的应用。2.1.3致密成型技术锯屑、稻壳、树枝、秸秆等具有一定粒度的农林废弃物经过干燥后在一定的压力作用下,可连续挤压成棒状、粒状、块状等各种固体成型燃料的加工工艺称为生物质致密成型技术。利用木质素特殊的胶黏作用,或另外加入一定的添加剂或黏结剂使其粘结在一起成为成型燃料,生物质原料经过挤压成型作用,体积缩小,密度会明显变大,含水率下降,方便贮存和运输。该技术在高效燃烧炉、生物质气化炉和小型锅炉等方面有广泛的应用。根据工艺特性的差别将生物质致密成型工艺划分为冷压致密成型、热压致密成型和碳化致密成型等3种,每种工艺都有其特点和应用范围。近年来,国内外科
11、研单位在生物质成型理论、生物质的利用装置、成型燃料燃烧技术等方面进行了研究,取得了突破性进展,开发生产了各种具有不同功能和应用范围的生物质致密成型机。此外还有单头、多头螺杆挤压棒状致密成型机,并已小批量投入了实际生产,取得了一定的社会和经济双重效益。由于多种因素影响,在成型机、成型原料及配套设备等方面也存在这样或那样的问题,不能期望在短期内进行全面应用。今后在设备的实用性、减少能耗、降低磨损、原料的适用性、系列化等方面要重点下功夫,为能够大规模开发并更好的利用生物质能提供必要的技术储备。2.2生化转化技术2.2.1厌氧消化制取沼气沼气发酵是一个(微)生物学的过程。农作物秸秆、人畜的粪便以及工农
12、业排放的废水中所含的有机物等都可以作为沼气发酵的原料,在适宜的条件和厌氧的环境下通过微生物的作用将有机物最终转换为沼气。其过程主要分为液化、产酸和产甲烷3个阶段进行。基本过程示意见图2。2.2.2酶技术制取乙醇或甲醇各种绿色植物(如玉米芯、水果、甜菜、甜高粱、秸秆、稻草、木片、草类及许多富含纤维素的原料)都可用作提取乙醇的原料。乙醇又称酒精,人们通常将用作燃料的乙醇称为“绿色石油”。生产乙醇的方法很多,主要有:利用含糖的原料直接发酵;间接的利用碳水化合物或淀粉进行发酵;将木材等纤维素原料通过酸水解或酶水解制乙醇。2.3热化学转化技术热化学转化技术是指在加热且缺氧的条件下,利用化学手段将生物质转
13、化成高品位、便于储存、易运输、能量密度高且具有商业价值的固、液及气态燃料,以及热能、电能等能源产品,燃料物质的技术J。热化学转化是从生物质生产生物燃料的一种有效方法,主要包括烘焙、液化、热解和气化技术。通过这些转化技术,从生物质中产生的固体、液体和气态的生物燃料用于发热和发电。液体生物油可进一步转化为化学品,同时合成气可以被合成为液体燃料。热解是处理固体废弃物较好的工艺之一,温度一般在300600,有慢速热解、快速热解和闪速热解3种方式。其过程可分为物料的干燥、半纤维素热解、纤维素和木质素热解4个阶段。在生物质热解过程中,热量由外至内逐层的进行传递。首先是颗粒表面,然后从表面传到颗粒内部,颗粒
14、受热的部分迅速裂解成木炭和挥发分,裂解后的产物在温度作用下还会继续裂解反应。实际应用的生物质热解工艺多为常压或接近常压反应,热解得到的产物主要由生物油、气体和固体炭组成。生物质气化也是生物质热化学转化的一种,其基本原理是在燃烧不完全的情况下,将原料加热,使分子量较高的化合物裂解成H2、CO、小分子烃类和CO2等分子量较低的混合物的过程。通常使用空气或氧气、水蒸气、水蒸气和氧气的混合气作为气化剂。气化的产物为合成气,经过费托合成或生物合成进一步转化为甲醇、乙醇等液体燃料,还可直接作为燃气电机的燃料使用。2.4固体废弃物处理技术对于固体废弃物的处理,传统的方式有填埋、焚烧、生化处理3种。填埋和焚烧
15、的方式造成资源和能源的浪费。目前,国内外对废弃物中的生物质能源的再利用做了更加深入的研究,主要采用饲料、肥料、沼气、燃料等方式对生物质进行科学有效的利用。如将其加工为饲料,充分利用其中的营养成分;采用堆肥化技术对庭院垃圾、有机生物垃圾、有机剩余污泥和农业废物等进行处理;采用沼气技术对农业、工业以及人类生活中的各类有机废弃物进行处理。在产生沼气的同时为了避免造成二次污染,要对沼渣和沼液进行再利用,沼渣和沼液可直接作为肥料或经固液分离制成商业肥料。采用生物质的压缩成型技术可将原来松散的、细碎的、无定形的生物质原料在一定条件下压缩成棒状、粒状、块状等各种成型燃料。2.5生物质液化技术生物质能的液化技
16、术是指通过水解、热解或催化等方法将生物质转化为液体燃料的技术。通过对生物质进行化学加工,制取液体燃料如燃料乙醇、甲醇、生物油等;在一定条件下,利用生物发酵或酸水解技术可将生物质转化加工成乙醇,供汽车或其他工业使用。利用生物质的液化技术不仅可以提高生物质的利用效率,还可以扩大其应用范围,通过生物质的液化制取液体燃料将是有发展潜力的前沿技术。2.6生物质的超临界转化技术超临界流体(SCF)是一种处于临界温度和临界压力以上的,物性介于气体和液体之间的有良好的流动性、传递性、扩散性和溶解性的流体。它兼具气体及液体的双重性质和优点,在其临界点附近,压力和温度发生微小的变化,都会引起流体密度、溶解度、介电常数等物性发生较大的改变。