《堆肥在土壤修复与质量提升的应用现状与展望.doc》由会员分享,可在线阅读,更多相关《堆肥在土壤修复与质量提升的应用现状与展望.doc(11页珍藏版)》请在第一文库网上搜索。
1、堆肥在土壤修复与质量提升的应用现状与展望研究背景中国作为一个耕地面积占世界耕地面积约8%的农业大国,随着农业集约化的不断普及与发展,土地的利用率与生产率也在不断提高。与此同时,过度放牧及耕作也对土壤造成了巨大危害,如过量施用化肥、农业废弃物随意焚烧与丢弃等不仅会导致土壤贫瘠、地下水污染和气候变化,还造成了资源的大量浪费。仅2017 年,全国农作物秸秆可收集资源量达到8. 27 亿t ,且以每年5% 10%的速度递增。作为产生量最大的农业废弃物,绝大部分秸秆被焚烧,只有少部分被用于回收利用。将秸秆直接焚烧或土壤回用,不仅会造成资源的大量浪费,还会导致土壤表层团粒结构受损,致使土壤板结。因此,需要
2、寻找一种环境友好且可持续处理农业废弃物的方法。堆肥本质上作为一种将有机质腐殖化的方法,有机废弃物可通过堆肥过程形成大分子胡敏酸,且随着形成功能基团类型和数量的不同,胡敏酸的结构也有所变化,可根据不同胡敏酸的特性应用于不同类型污染土壤的修复与质量提升。腐殖质物质(humic substances, HS)作为有机质的主要组分,根据其能否溶于酸、碱溶液,可分为胡敏酸类物质( humic acid-like, HLA)、富里酸类物质(fulvic acid-like, FLA)和胡敏素类物质(humin-like,HLM)。人工合成HLA 结构会受到实验室条件(如pH、温度、试剂浓度、HLA 物质性
3、质) 的影响。由于从不同样品中提取得到的HLA 的功能基团类型和结构都不相同,因此目前对HLA 的具体结构组成还没有定论。由于HS 拥有污染物吸附和氧化还原的特性,在土壤污染修复与质量提升方面(如重金属污染、盐渍土修复、有机氯农药降解、生物质回收与全球碳循环等,详见图1) 受到了广泛的关注。随着国家化肥使用量零增长行动方案及垃圾分类、无废城市建设等政策的大力推行,利用堆肥处理分类后的生活垃圾和农业废弃物等有机废物,不仅能有效地对有机废弃物进行回收,还能将堆肥产物作为土壤肥料或土壤修复剂使用,解决土壤污染修复与质量提升上的双重难题。图1堆肥污染修复与质量提升摘要堆肥作为一种经济有效、环境友好的技
4、术手段,通过生物强化将垃圾有机质转变为富含多种功能基团的大分子胡敏酸类的产品,可修复和改善土壤质量,将垃圾中的有效资源最大程度循环固定回土壤中,有效解决我国耕地超负荷种植、有机质持续下降等突出矛盾。对目前国内外利用堆肥在土壤修复与质量提升方面的研究进行了综述,对常见土壤污染类型如重金属污染、盐污染和有机氯农药污染的修复以及土壤碳库质量的提升和全球碳循环进行了详细讨论,并展望堆肥应用的未来,以期对今后有机垃圾处理胡敏酸类物质工程应用土壤修复与质量提升全链条深入研究,土壤修复与质量提升技术的理论依据和促进实际应用的发展提供参考。01堆肥在土壤中的应用与评价堆肥在土壤修复中的应用,实质上也是HS对受
5、污染土壤的修复过程,其修复效果与堆肥过程和堆肥产物中HS的含量与质量息息相关。若要建立一个以有机废弃物为原料的有机肥料商业化市场,还需对堆肥产物的质量评价提出更高的要求。因此,堆肥的发展不仅仅要关注堆肥效率,对堆肥产物质量的评价也至关重要。堆肥产物的质量不仅受到堆肥原料的种类与来源的影响,同时堆肥过程中HS结构的演变及微生物降解,也会对堆肥产物的质量产生影响,堆肥产物也有不同的作用( 如作土壤修复剂或农业施肥)。获得高利用价值、稳定的最终产物的过程,也是提高营养元素的留存与有效性、阳离子交换能力,增加并改善有机质来源的HLA 的堆肥过程。堆肥产物的质量越高,在恢复和保持土壤肥力、促进有毒有害污
6、染物降解和改善土壤性质方面越有效。因此,对堆肥产物的评价,不仅需要评价其有效性(如养分含量、HLA 的功能团及结构、在土壤中的功能、质量提升效率、原料的分解与转化机制等),还要考虑到堆肥过程成本(如堆肥原料和最终产物的运输与保存、场地和设备等)。因此,维持堆肥成本与高质量堆肥产物之间的相对平衡,才能够促进其在土壤修复与质量提升方面的发展。坎帕拉市曾做过一项民意调查,在使用粪便污泥和城市固体废物为原料的堆肥产物中,把堆肥产物质量由低到高分别进行意愿调查,发现堆肥产物质量越好,农民越愿意购买并代替化肥来使用。因此,如何在保持堆肥成本的同时,尽可能提升堆肥产物的质量,并建立统一的质量评价体系,还需要
7、更加完善的研究。02重金属污染土壤的修复重金属在土壤中具有不可降解性,其很容易进入生物链中,从而危害人类、动物和植物的健康。HS可在金属氧化还原过程中充当电子穿梭体,已有研究发现,HS的表面功能基团可能会与重金属反应形成络合物,从而影响金属离子的浓度与迁移性,同时HS 的形成也是堆肥过程中有机质腐殖化的重要过程。因此,在重金属污染土壤中施用含有HS的堆肥产物,可有效对污染土壤进行修复。1.六价铬的还原铬(Cr)是一种可在-2 +6 氧化态间发生氧化还原反应的元素,环境中普遍存在的Cr 为Cr()和Cr()。氧化的Cr()具有“三致”性,在环境中以可溶性氧化阴离子的形式( 如CrO2-4、HCr
8、O-4和Cr2O2-7)存在。相反,还原态的Cr()毒性较低,且在维持正常生物体生理功能方面发挥着重要的作用。还原态Cr()在水和土壤中主要以不溶物的形态存在,如Cr(OH)3 或吸附在土壤矿物表面的有机金属络合物。Cr()是一种强氧化剂,通过水和H+ 、矿物表面的电子转移和简单有机分子的氧化还原反应,可以在水和土壤等介质中被还原成三价形式的氧化剂。从水溶液中去除Cr( ) 的传统方法包括还原(沉淀)、离子交换、膜分离和表面吸附等。近年来,利用环境友好的方法,如细菌、真菌、藻类、工业和农业废物以及HS(特别是HLA)来治理Cr()污染也受到了大量的关注。在大多数对Cr() 的还原研究中,都是使
9、用商业HLA 或直接从土壤、煤炭或水中提取HLA 来促进Cr()的还原。然而,由于商业HLA 价格高昂和天然HLA 提取产量较低等原因,限制了HLA 在污染土壤修复中的发展。堆肥也被当作一种成本低廉,且能够稳定而高效地生成HLA的方法。在HS 对Cr()的还原中,HS 主要充当了电子供体和电子受体。因此,HS 的电子转移能力(electron transfer capabilities, ETCs)是影响Cr()还原的重要因素。由于不同堆肥原料中HS 的ETCs 存在很大差异,因此选择合适的堆肥原料有助于生成大量具有促进Cr()还原的特定功能基团和结构的HS。在研究HS 中的哪些功能基团参与了
10、Cr()还原的问题上,发现HS 组分中的HLA、FLA 和HLM 都拥有还原Cr()的功能基团,其中包括HLA 的硫醇和酚类功能基、羧基和羰基、苯酚,FLA 的羧基和羟基,HLM 的羧基和羰基等,功能基团的差异与不同的堆肥原料有关。且HLA 和FLA的还原效果要优于HLM。但除了功能基团的作用外, HS 对Cr () 的还原还受到pH 值、微生物活性、腐殖化程度和HLA 的分子量等因素影响。因此,为克服生物与非生物条件对HS还原效率的影响,增加堆肥过程中形成HS 的还原位点,还需更深入的探索。2.铁的氧化还原Fe()是天然土壤和沉积物中微生物呼吸的重要电子受体。在中性pH 条件下,Fe() 的
11、溶解度非常低,主要形式为贫结晶和结晶Fe()(氧合)氧化物。与其他电子受体(如O2)不同,微生物很难通过Fe()微粒,因此Fe() 很难被带入细胞中,细菌必须利用外膜细胞色素才能将电子从细胞中转移到固态铁矿物上。然而,这种电子转移需要细胞与铁() 矿物直接接触。微生物对Fe() 的还原通常会受到矿物表面积的限制。电子穿梭可以促进微生物铁() 还原,天然HS 能够充当电子穿梭机,促进电子供体(如胞外呼吸菌) 和电子受体(如Fe 和Mn 矿物) 之间的电子转移,研究发现, 堆肥过程中生成HS的醌含量和芳香度与Fe()的还原效率呈正相关。因此,含高浓度HS的堆肥产物在Fe 氧化还原中拥有巨大的应用潜
12、力。土壤中Fe 的氧化还原循环过程本质上是电子转移的过程,其循环速率受到土壤微生物和有机质的影响。土壤中Fe 的循环除了会影响C、N 和P 等营养元素的转化外,还是许多金属与准金属的重要反应界面,进而影响金属污染物在土壤中的命运和流动性。如Parsons 等发现重复的Fe 氧化还原循环能有效降低As 的流动性,且在还原条件下流动性的降低高达45%。除了As 外,其他有毒金属(如Cd、Cu 和Zn 等),也能够通过多次氧化还原循环而固定在Fe 氧化物上,但其固定效率与土壤有关,在草地中的固定(95%的Cd、100%的Cu 和30%的Zn)效率要优于耕地,这可能是草地中Mn 含量较高且Mn 的吸附
13、能力比Fe 强所致。由于HS 表面存在许多与氧化还原有关的活性功能团,可以进一步催化包括多种有机污染物在内的离子与分子的氧化还原。且HS 也可通过微生物的分解作用,将电子转移到低结晶和高结晶Fe()矿物中。因此,土壤中HS 具有促进Fe 氧化还原循环速率的能力。且堆肥过程中生成的HLA 也能够有效地促进Fe()还原,从而加快土壤中Fe 氧化还原循环的速率。这种沿着时空的氧化还原梯度发生的氧化还原反应序列变化也与微生物的活性有关。一般来说,Fe 氧化菌和Fe 还原菌越多,活性越强,Fe 氧化还原速率也就越快。目前,关于利用HS 作为电子供体促进Fe()还原速率的腐殖质还原菌也逐渐受到关注,如Ge
14、obacter metallireducens 和Shewanella alga, Leucobacter、Clostridium sensu stricto 和Sporosarcina, Pseudomonas geniculata PQ01等,都被报道能够促进Fe 的还原。可以推测,在重金属污染土壤中施用含有HS 的堆肥产物,不仅有助于Fe 的氧化还原循环,也有利于其他重金属的生物固定作用。综上所述,堆肥生成的HS 施加到受污染土壤中时,既可以与微生物共同作用促进重金属的还原,也可以通过促进Fe 的氧化还原而影响重金属的迁移与转化,从而完成对受重金属污染土壤的修复。03盐渍土的修复土壤退化
15、是世界干旱和半干旱地区作物可持续生产的主要障碍。土壤盐分和养分的缺乏都会对全球农业构成严重威胁。世界上约有20%的耕地面积和50%的灌溉农田受到了土壤盐分的影响。随着受污染水源的直接灌溉和化肥制品的过量使用,预计受过量盐影响的地区将不断扩大。此外,降水量的限制、水分蒸发、水土管理不善等因素也导致土壤盐分进一步加重。过量盐浓度不仅会改变土壤理化性质,而且还会对土壤的结构稳定性和容重产生不利影响,最终影响作物的产量,增加黏土的分散性,降低土壤的渗透性。当碱度过高时还会导致土壤产生结构性问题,如溶解、膨胀,以及一些会导致土壤表面结壳和硬化的因素(这些过程都属于物理过程)等。寻找环境友好技术改善盐渍土
16、并提高作物生产力是当前盐渍土修复的关键。因为微生物能通过各种反应恢复退化土地的肥力,目前常利用微生物活性对盐渍土进行复垦。微生物还能够通过固氮作用和关键营养素(P、K、Fe)向作物的迁移来提高养分的生物利用度,同时通过改善土壤的聚集性和稳定性来修复土壤结构。近年来,在盐渍土的复垦中出现了许多新的技术,如物理改良(深耕、亚土、砂光和剖面反演)、化学改良(用石膏、氯化钙和石灰石改良土壤等改良材料)和电复垦(用电流处理)等。目前,使用富含HS 的堆肥产物作为受盐污染土壤的土壤改良剂和有机肥料也受到了越来越多的关注。使用环境友好的有机改良剂(如城市生活垃圾、动植物肥料和农业废弃物等的堆肥产物)对土壤进行修复,有利于提高土壤的可持续性。这些有机改良剂的应用显著改善了盐渍土和土壤有机质的物理、化学和生物性质。施用上述有机改良剂还显著增加了受盐影响土壤中的养分浓度,包括N、P、K、有机碳、微生物生物量和酶活性等。使用富含HS 的堆肥产物对盐渍