质数和合数教学实录与评析(续2).docx

上传人:lao****ou 文档编号:349890 上传时间:2023-09-15 格式:DOCX 页数:5 大小:16.05KB
下载 相关 举报
质数和合数教学实录与评析(续2).docx_第1页
第1页 / 共5页
质数和合数教学实录与评析(续2).docx_第2页
第2页 / 共5页
质数和合数教学实录与评析(续2).docx_第3页
第3页 / 共5页
质数和合数教学实录与评析(续2).docx_第4页
第4页 / 共5页
质数和合数教学实录与评析(续2).docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《质数和合数教学实录与评析(续2).docx》由会员分享,可在线阅读,更多相关《质数和合数教学实录与评析(续2).docx(5页珍藏版)》请在第一文库网上搜索。

1、“质数和合数教学实录与评析(续2)您现在正在阅读的“质数和合数教学实录与评析(续2)文章内容由收集!本站将为您提供更多的精品教学资源!“质数和合数教学实录与评析(续2)四、认识质数表、运用质数表、制作质数表1、认识质数表师:判断一个数究竟是质数还是合数,关键是看它除了1和它本身外,还有没有其他的约数,一个数如果除了1和它本身还含有约数2、3或者5,那么我们运用已经学过的能被2、5、3整除的数的特征,就可以很快地作出判断,但是有些数我们就不一定就能很快判断出,这时我们可以去查质数表。(出示质数表)师:这是一张IOO以内的质数表JOO以内在这里出现的是什么数?生:质数。师:没有出现的呢?生脱口而出

2、):合数。师:是这样吗?生:1要除外。师:请你将这些质数读一读,想一想没有出现的数,它们为什么没有出现?然后找出20以内的几个质数,并将它们记住。2、运用质数表师:现在我们又多了一个判断质数的方法,当我们运用概念判断有困难时,别忘了可以借助质数表。完成一个判断质数、合数的练习)3、制作质数表师:刚刚老师为你提供了一张现成的质数表,你想不想也来制作一张质数表?早在两千多年前,古希腊数学家就掌握了一种制作质数表的方法。我们来看看他们是怎样制作质数表的?在教师的引导下学生完成制作质数表的过程)师:课后请你用这样的方法去制作一个IOO以内的质数表。评析:一个静态的质数表,经过教者精心处理,使上述过程成

3、了一个有效地稳固、应用、拓展已学知识的动态过程。五、游戏中运用概念师:今天,我们又认识了两种新的数:质数和合数,再加上我们前面学习的奇数、偶数,这么多的概念,你还能识别清楚吗?师:下面我们就来综合应用这些知识做个游戏,看看大家到底学得怎么样?这个游戏与每个同学的学号有关,游戏之前先请你运用已学的知识研究一下代表你的学号的那个数,你有什么结论?生1:我是8号,8是合数。生2:我是17号,17既是质数还是奇数。师:在小组内交流一下你的研究结论。(学生小组交流)按如下步骤完成游戏:学号是偶数的同学请起立,其中是质数的请到一边排队,你发现了什么?请站着这些学号是合数的同学排到另一边,仍然坐在这里的同学

4、的学号是什么数?坐着的同学中学号是质数的请排过来,剩下的都是合数吗?除1号同学外,还有哪些同学还坐着呢?大家猜猜看。坐着的同学依次报出自己的学号。评析:选择与学生学习生活非常接近的数学问题而进行的生动游戏,不但使学生在兴致盎然中完成了对所学知识的综合应用,而且让学生深切地感受到了“数学无处不在。六、全课总结师:通过这节课的学习,你又有了什么新的收获?师:我们在前面提出的问题都解决了吗?师:请你拿出充足的理由说明以下说法正确与否。出示:所有的奇数都是质数。所有的偶数都是合数。在1,2,3,4,5,中,除了质数以外都是合数。1既不是质数,也不是合数。评析:前后照应的总结在学生头脑中留下了较为完整的

5、解决数学问题的过程。七、关于“哥德巴赫猜测的介绍师:同学们今天不仅学得认真,而且会学习有方法,老师忍不住还想给大家介绍一个与今天学习内容有关的世界性数学难题,你想不想见识见识?它是由一个名叫歌德巴赫的数学家提出的。师(出示“歌德巴赫猜测:任何一个大于或者等于6的偶数都可以表示成两个质数之和。):读一读这句话,你能理解这句话吗?这个说法是否正确呢?我们可以怎么办?生:我们可以举一些例子来验证,如果我们能举出一个反例,就可以说明这个猜测是不成立的。师:你的想法很好,如果能举出一个反例,这个难题今天就被我们解决To怎么举例呢?生:先选择一个符合条件的数,比方先选6,6可以表示成3+3,与这个猜测相符

6、。师:请每个同学自己再举一个例子,看看它是否仍然成立。在小组内一起研究一下这个问题。(学生小组活动)师:你发现了什么?生1:我们所举的例子都与这个猜测相符。生2:我们所举的例子也与这个猜测相符。师:同学们举了这么多的例子都与这个猜测相符,不仅如此,数学家们借助计算机对很多、很大的偶数进行了研究,结果都与这个猜测相符。可是这个说法至今却还没有得到证明。我国的一些数学家如陈景润、王元等,研究这个问题时都取得了举世瞩目的成果,说不定将来有一天,我们班的数学爱好者中就有一人证明出了这一猜测,老师期待着这一天!评析:介绍“歌德巴赫猜测,不仅是拓展了学生的知识面,学生综合应用知识的能力、思考和解决数学问题

7、的素质都得到了提高。总评:作为一节典型的概念教学课,本节课的教学内容相对来说比拟抽象,与学生的生活有一定距离,如何在这样的课的教学中表达新课程理念?教者进行了有益地探索和尝试。首先,即使是比拟抽象的数学概念,教者仍然立足于学生的自主探究进行教学,从研究方法的选择到概念的得出、完善与应用,无不在学生自主探究中完成。此外,教者还特别注重让学生经历较为完整的探究过程,这为学生今后的数学学习积累了一定的经验。其次,在本课的教学过程中,学生自始至终都保持着较高的学习热情和强烈的探索欲望,原因就在于教者在准确把握教材的根底上,对学习材料进行了有效地加工和重组,使得学生在整个学习过程中能够不断遇到挑战,并不断在这些挑战中体验成功所带来的学习乐趣。这个过程还应验了一个观点:学生对数学学习的持久兴趣来自于数学本身。(完)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 汇报材料

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服