《烟气脱硫工艺技术选择案例.docx》由会员分享,可在线阅读,更多相关《烟气脱硫工艺技术选择案例.docx(28页珍藏版)》请在第一文库网上搜索。
1、烟气脱硫工艺技术选择案例我们认为石灰石一石膏湿法烟气脱硫工艺技术是川维厂烟气脱硫的首选方案,原因如下:(1)烟气脱硫处理能力方面川维厂位于国家划定的酸雨控制区内,重庆市也是高硫煤产区,根据国务院关于两控区酸雨和二氧化硫污染防治“十五”计划提出的排污总量控制目标,重庆市和中国石化二氧化硫削减方案,意味着川维厂将面临两条选择:要么降低燃料的硫含量,要么增设脱硫设施。根据川维厂处于高硫煤地区的实际状况,无法使用低硫煤,而且即使能降低燃料硫含量,烟气中的尘含量高的问题也无法解决。总之,川维厂老锅炉改造势在必行,而且脱硫、除尘一并解决,随着我国经济的飞速发展,环境问题日益突出。由二氧化硫排放所致的硫酸型
2、酸雨污染危害面积达国土面积达40%以上,全国七大水系均受到不同程度的污染。根据有关资料表明,我国由于酸雨和二氧化硫造成农作物、森林和人体健康等方面的经济损失每年占我国GDP的2%3%,仅江苏、浙江等七省因酸雨而造成农田减产约1.5亿亩,年经济损失约37亿元;森林受害面积128.1万公顷,年木材损失6亿元,森林生态效益损失约54亿元。二氧化硫污染已经成为制约我国经济和社会发展的重要因素,削减二氧化硫排放量、控制大气二氧化硫污染,保护大气环境质量,是目前及未来相当长时期内我国环境保护的主要课题。进行严格的控制势在必行。政府部门对SO?排放要求严格,根据上述表1.2-3、1.2-4和1.2-5列脱硫
3、前后的污染物排放总量情况,要确保重庆市政府批准的川维厂2010年二氧化硫总量控制指标4960吨/年的实现,川维厂的SOz排放指标必须达到400mgNm3以下,脱硫效率须达到96%以上。鉴于川维厂目前的脱硫烟气处理量较大,#5和井9炉脱硫烟气量达730061Nm3h,且燃煤含硫量较高,全硫达St,d2.57%,因此,在目前常用的几种烟气脱硫技术中,石灰石一石膏湿法脱硫工艺作为最成熟可靠,在国内外有最广泛应用业绩的成功脱硫工艺,应是川维厂进行老厂脱硫改造的首选。(2)技术经济指标方面如上述,石灰石一石膏湿法脱硫工艺技术成熟可靠,应用最广,适用于所有煤种和所有机组;石灰石一石膏湿法脱硫工艺烟气和SO
4、z处理量大,负荷适应性好;脱硫率高达99%,同时还具有较高的除尘能力。脱硫吸收剂价廉易得;运行成本低,脱硫副产物石膏可综合利用,无二次污染。相对而言,石灰石一石膏湿法脱硫工艺由于工艺系统较复杂,工程初投资较大。但随着目前脱硫核心技术的引进、自主知识产权化和关键设备的生产已大部分实现国产化,因此,脱硫工程的单价下降较多,目前国内大型机组的脱硫单价已由最初的8001000元kW下降至400500元/k肌因此,很适合于川维厂目前即将开展的脱硫工程改造。另外,在运行费用方面,石灰石一石膏湿法脱硫工艺的运行费用主要由电费、水费、吸收剂成本构成,此外,脱硫副产物一石膏进行综合利用可以回收一部分运行成本费用
5、。相对而言,石灰石一石膏湿法脱硫工艺的运行费用较低。(3)硫资源的循环利用方面如上述,石灰石一石膏湿法脱硫工艺的脱硫副产物一石膏可作为建筑装饰石膏板或水泥添加剂进行综合利用,且绝无二次污染,目前在市场上比较畅销。(4)脱硫吸收剂的供应方面川维厂附近的石灰石矿源储量丰富,且质量较优,石灰石一石膏湿法脱硫工艺所需的吸收剂来源稳定,且价廉易得,完全可以确保石灰石一石膏湿法脱硫装置的正常运行。从以上的技术经济分析,以及结合国家产业政策和石化企业本身要求锅炉长周期正常运行的特点,可以认为:石灰石一石膏湿法脱硫工艺技术具有脱硫效率高、资源化技术日益成熟、符合循环经济原则等优势,是一种比较适合燃用高硫煤锅炉
6、烟气脱硫改造的脱硫工艺。因此石灰石一石膏湿法脱硫工艺技术是本工程推荐的烟气脱硫工艺技术。3.5同方环境公司石灰石一石膏湿法脱硫工艺技术特点同方环境公司的石灰石一石膏湿法脱硫技术是在引进吸收奥地利能源及环境公司(AE&E)喷淋塔脱硫技术基础上,结合国内脱硫工程特点并总结公司40余个脱硫工程建设的实际经验,同时依托清华大学自有的技术优势,进一步开发创新、优化形成的。同样是喷淋塔技术,我们具有更多的优势。1吸收塔设计与循环泵选型综合优化,降低脱离系统电耗吸收塔的设计直径与吸收塔空塔流速有关。一般来说,较高的空塔流速可以降低循环泵的流量,减小循环泵电耗。但这也会增加了吸收塔压损。同方环境公司吸收塔综合
7、考虑塔与循环泵的最优化设计,选取适当的空塔流速,降低脱硫系统总电耗。下图表示了不同空塔流速下增压风机(本工程为引风机代增压风机)、循环泵及综合电耗的曲线。可以看到,空塔流速在3.8m/s时,FGD综合电耗最低。在烟气入口流量增加10%时,空塔流速约4.1m/秒,吸收塔仍然可以保证在非常经济的工况下运行。3.03.54.04.5空塔流速(曾/$)一番环索电耗-.a.增压风机电耗图4-1:不同空塔流速下的电耗2针对吸收塔浆池的大小,设计最佳的强制氧化方式亚硫酸钙的氧化是通过向反应池适当的位置注入氧化空气来实现的强制氧化。一般来说氧化空气喷嘴有两种设计方式一排管式(见图4-2)和喷枪式(见图4-3)
8、。图4-2:排管式氧化空气喷嘴图4-3:喷枪式氧化空气喷嘴排管式氧化空气喷嘴是在插入吸收塔浆池内的多束管道上开孔的方式导入氧化空气。特点是系统简单,氧化空气在浆池断面上分布较为均匀,氧化空气的插入深度较低,氧化风机的出口压力要求低。喷枪式氧化空气喷嘴是在浆池搅拌器的的正前方导入氧化空气,通过搅拌器的作用使空气扩散到整个浆池。特点是氧化空气的插入深度较大,需要的氧化空气量比排管式小,氧化风机的出口压力要求高。图4-4是不同氧化空气插入深度对氧化空气的需求量的影响。DepthofOxidationAir1niecbonry图4-4:过剩空气系数从上图可知,氧化空气插入深度越深,氧化空气的利用率越高
9、,对氧化空气的用量越低,但是对氧化风机的出口压力要求越高。氧化空气喷嘴方式的选取需要综合考虑上述因素,并考虑到风机制造商的设备选型特点,在保证亚硫酸钙的有效氧化的条件下选取最优的氧化风机型号,降低电负荷。根据本项目特点,我们推荐采用排管式氧化空气喷嘴的模式。3计算机模拟计算与模型试验相结合,最优化吸收塔及内部件的设计同方环境公司设计了18个直径序列的标准吸收塔,(9、9.5、10、10.5、11.5、12、12.5、13、13.5、14、14.5、15.3、16、17.5、18.4、19、20m)对于每个序列的吸收塔我们都进行了计算机模拟计算与模型试验来优化吸收塔及其内部喷淋层的设计。目前,同
10、方环境公司在国内的业绩已经全面覆盖了上述直径序列的吸收塔,20多个项目已经通过了168试运行,脱硫效率均达到或超过了最初的设计值。4-5:吸收塔的内部流场分布计算模拟图4控制脱硫塔烟气均匀流动技术同方环境公司根据AEE公司参考几十年设计FGD系统所获得的经验,通过计算机模拟设计,确定了吸收塔内喷淋层和喷嘴的布置、除雾器、烟气入口和烟气出口的位置,优化了PH值、1/G、石灰石化学当量比、氧化空气流量、浆液浓度、烟气流速等性能参数。-20.0Vs4.0初始设计优化设计轴向流速分存模拟对比CFD仿真一速度场模拟优化设计前优化设计后轴向流速分布模拟对比模拟模型试验模型试验和理论模型的比较5吸收塔的设计
11、介绍吸收塔高度尺寸的设计需要考虑的主要因素有:浆液池正常高度HI浆液池正常液位至吸收塔入口烟道下端面高度H2吸收塔入口烟道高度H3 吸收塔入口烟道上端面至最下一层喷淋层高度H4 喷淋层间距H5 除雾器安装高度要求H6 吸收塔入口烟道高度H7吸收塔高度H=H1+H2H3H4+H5*(n-1)H6+H7n为喷淋层层数同方环境公司技术的喷淋塔设计,具有较大的吸收区域高度(H32+H4+H5*(nT)。同时因为采用新型式的除雾器,便于除雾器的检修维护,同时降低降低除雾器安装高度要求H6,使得吸收塔的设计紧凑,能够有效减小烟气在吸收塔和烟道的阻力损失,降低脱硫电耗。吸收塔的吸收区域是指吸收塔入口烟道中心
12、线以上至最高一层喷淋层中心线中间的区域。喷淋的浆液在该区域对含硫烟气进行洗涤。充分的吸收区域高度可以保证较高的脱硫率。在满足同样脱硫率的要求下,这个高度越高,所需要的循环泵流量就越低,这可以降低循环泵流量及电耗,从而降低吸收塔压损。同方环境公司的吸收塔设计空间紧凑合理,易于检修。吸收塔在保证较高吸收区域高度的情况下,尽量减小烟气在吸收塔和烟道的阻力损失,降低脱硫电耗。6其它设计特点6.1 低负荷运行适应性强1)本工程吸收塔采用空塔结构,配四层喷淋层,有较小的阻力和较高的脱硫率。当#5炉和#9炉单台炉运行时,吸收塔只需投入三层喷淋层,此时脱硫效率和烟气排放满足要求。2)本工程氧化风机共配置3台(
13、二运一备),当投入#5炉和#9炉两台炉时,氧化风机按二运一备的方式运行;当投入#5炉或#9炉单台炉时,氧化风机按一运一备的方式运行即可满足石膏浆液的氧化要求。与常规的2台氧化风机(一运一备)配置方案比较,其特点如下:优点:3台氧化风机的配置方案运行可靠,调节灵活;对机组负荷的适应性较好;3台氧化风机的配置方案可根据机组负荷情况灵活采用二运一备或一运一备的运行方式,从而最大限度地节省脱硫电耗;缺点:3台氧化风机的配置方案占地面积稍大,设备和系统初投资约高30%(初步估算约3040万元)。3)本工程吸收塔配2X100%石膏浆液排出泵,石膏浆液排出泵采用变频调节运行方式。当锅炉负荷在50100%BM
14、CR工况下运行时,石膏浆液排出泵进行变频调节,满足机组运行的需要,同时尽量减小泵的运行功率,节约用电。通过上述优化措施和特殊设计,提高了电厂锅炉低负荷工况的适应性。当#5炉和#9炉单台炉运行时,在满足脱硫效率和运行要求的前提下,可节省电耗476kW.hh(6kV馈线处),为电厂经济运行提供灵活方便的运行方式和更好的经济效益。6. 2其它采用压力要求低的喷嘴,减小循环泵工作压力,降低电耗;高效率杂质分离系统,可以降低吸收塔对石灰石纯度的要求;脱硫废水排放量低;吸收塔浆池容积设计较大,保证高品质石膏产品的生成。7主要设备技术特点6.1 吸收塔系统7. 11吸收塔a.结构吸收塔为圆柱形塔,烟气从吸收
15、塔中下部进入吸收塔,从塔顶侧向离开吸收塔。吸收塔壳体由碳钢制做,内表面衬丁基合成橡胶防腐。吸收塔的设计能保证要求的脱硫效率而无需设置任何用于强化传质的内置件。同方环境公司通过优化设计减少了吸收塔内部件,这对提高系统的稳定性和可靠性是至关重要的。塔的下部为浆液池,同方环境公司为本工程设计了容积足够大的浆池,氧化时间充分,石膏结晶时间长,能保证生产高品质的石膏,并为石灰石提供充分的溶解时间以保证低水平的钙/硫比(Ca/S),同时保证为喷淋过程中物理溶解于浆液中的酸性物质在浆池内与溶解态石灰石的反应提供充分的反应时间,由此确保高的脱硫效率。浆池中下部均布多个侧进式低速搅拌器,以防止固体沉淀。在烟气参数如烟气流量、烟气温度和SO?初始浓度发生快速变化的情况下,能够稳定吸收塔的正常运行,浆液池的设计保证提供充分的气固缓冲容积。烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区设四层喷淋层,由独立的循环泵与各自对应的喷淋层连接。吸收塔按脱硫设计煤种(Sar=2.41%)进行设计。入口段向塔内延伸约0.65m,以保护吸收塔的防腐层不受高温烟气的损害;入口段与吸收塔平面成7。的倾角,保证所有冷凝酸及喷淋液回入塔内;向下的入口烟气设计有利于增加了烟气的湍流,