第三章函数概念与性质检测卷综合版.docx

上传人:lao****ou 文档编号:590308 上传时间:2024-02-20 格式:DOCX 页数:15 大小:128.19KB
下载 相关 举报
第三章函数概念与性质检测卷综合版.docx_第1页
第1页 / 共15页
第三章函数概念与性质检测卷综合版.docx_第2页
第2页 / 共15页
第三章函数概念与性质检测卷综合版.docx_第3页
第3页 / 共15页
第三章函数概念与性质检测卷综合版.docx_第4页
第4页 / 共15页
第三章函数概念与性质检测卷综合版.docx_第5页
第5页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第三章函数概念与性质检测卷综合版.docx》由会员分享,可在线阅读,更多相关《第三章函数概念与性质检测卷综合版.docx(15页珍藏版)》请在第一文库网上搜索。

1、第三章函数概念与性质检测卷(综合版)一、单选题1 .函数/)=Jrn+2)0的定义域是()A.-3,+)B.-3,-2)C.-3,-2)-(-2,+oo)D.(-2,+)2 .已知函数/(x)=。x,则/(/(16)=()-X1+2x,Xf(b)fa3.已知定义在R上的函数/O),其导函数/(幻的大致图象如图所示,则下列叙述正B. f(b)fa/(c)D.f(c)f(b)f(d)4 .设二次函数/(x)=+7+c,如果/(玉)=/(&)(XWA2),则/(x+x2)等于()bb4ac-b1A.B.C.cD.2aa445 .已知偶函数/*)在区间io,+8)内单调递减,则使得了(-i)yi)成立

2、的X取值范围是()A. A.(2,oo)B.(-,0)B. F(X)为奇函数C. f。)为增函数c也图D.存在非零实数b,使得/3)+/S)=/(g)三、填空题13 .已知寡函数y=H的图像经过点(3,9),则牛=.14 .己知/(x),g(x)分别是定义在R上的偶函数和奇函数,且/(x)-(x)=x5+x4+6,则/(1)+g(D=15 .己知函数y=(x),xR,y=(x)是奇函数,且当x0时,/(x)=x3+2-1,则x0时,/(%)=.16 .定义在(0,+。)上的函数/(x)满足土乂止旦O的解集为.X四、解答题17 .定义在R上的奇函数/(x)在0,+8)上的图像如图所示.(1)补全

3、/()的图像;(2)解不等式J(x)O.18 .已知函数/(x)=f+2(左一1)1+公+2.(1)若不等式f(x)O的解集为x1vxv3,求实数攵的值;(2)若函数/(x)在区间2,4上不单调,求实数攵的取值范围.19 .若函数/3)为偶函数,当x0时,/(x)=2x2-4x.(1)求函数Fa)的表达式,画出函数数外的图象;(2)若函数/(X)在区间。-3,1上单调递减,求实数。的取值范围.20 .已知函数/(x)=,(x)=x-2.(1)求方程f(x)=g(x)的解集;定义:maxa,b=己知定义在0,)上的函数MX)=相依/。)*(切求函数力(X)的解析式,在平面直角坐标系中,画出函数M

4、X)的简图;并写出函数S)的单调区间和最小值.21 .上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔,(单位:分钟)满足2r20,fN经测算,在某一时段,地铁载客量与发车时间间隔”目关,当10f20时地铁可达到满载状态,载客量为1200人,当2f10时,载客量会减少,减少的人数与(10-,)的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为).(1)求P的解析式;(2)若该时段这条线路每分钟的净收益为Q=汕T竺-360(元),问当发车时t间间隔为多少时,该时段这条线路每分钟的净收益最大?22 .已知函数/(x)是定义在R

5、上的偶函数,且当x0时,/(x)=x2+2(1)求函数/(x)的解析式;(2)若函数g(x)=(x)-2r+2(x1,2D,求函数g(x)的最小值.参考答案1. C【分析】根据函数成立的条件,列出不等式关系计算即可.【详解】要使函数有意义,则看,即:/,所以一-3且x-2,即函数的定义域为-3,-2)J(-2,+co).故选:C2. D【分析】根据分段函数解析式,代入即可求解.【详解】由/()=,Ei,-X1+2x,x1/(/(16)=/(4)=2.故选:D3. C【分析】根据导函数的图象,求出函数f()的单调区间,根据,b,C的大小以及函数的单调性判断函数值的大小即可.【详解】解:显然/(X

6、)在(。,C)递增,在(c,d)递减,而bc,故f()f(b)f(C).故选:C.4. C【分析】由二次函数性质可知玉+/=-2,代入解析式可求得结果.a【详解】/()=()(x12),aXpX2关于/(x)的对称轴X=对称,故选:C.5. D【分析】结合偶函数的性质判断出函数在(YO,0)的单调性,从而结合函数的单调性得卜-1|1,解不等式即可得出结果.【详解】因为偶函数/(幻在区间o,+8)内单调递减,所以在区间(o,o)内单调递增,又因为F(X-I)所以,一I1O=-1nxO=Ox1;/z(x)-1nxx1;即得函数/(x)在(U)上单调递增,在(1,位)上单调递减,所以可得/(T)v(

7、1)Vf-1-f-1=2-1n2-1n3+-1n22)2)333=-(1-1n2-21n3)=-(1-1n2-1n9)=-(1-1n18)33即得.故选:C.9. AC【分析】利用基本函数的图像和性质逐个判断即可【详解】解:对于A,由于20,所以y=2x+1在(0,+?)上单调递增,所以A符合题意,1.x-1,x1z、对于B,由于y=k-1|=1_xx,可知此函数在(0,+?)上不是单调函数,所以B不符合题意,对于C,题意,2由于一20,所以反比例函数y=-q在(0,+?)上是单调递增函数,所以C符合对于D,所以D,不符合题意,y=2一+i的对称轴为直线X=;,所以此函数在(0,+?)上不是单

8、调函数,故选:AC10. AD【分析】由x+2)=-(2),可知/(刈的图象关于点(2,0)中心对称;结合函数/(x)为偶函数可得/(x)是周期为8以及关于直线=4轴对称,结合周期,对称中心和对称轴可判断出/(x+4)为偶函数【详解】因为/(x+2)=-(2-x),所以/(x)的图象关于点(2,0)中心对称,又因为函数/(x)为偶函数,所以了(力是周期为8的周期函数,且它的图象关于点(-2,0)中心对称和关于直线x=4轴对称,所以/(x+4)为偶函数.故选:AD.11. AC【分析】2xX-2xX-I-,x1【详解】12. 故选:AC13. ABD【分析】令=y,得到/9)=0,再令X=O得f

9、(y)=-f(-y),从而得出/)为奇函数可判断选项A;设一1xvy1,则一二上0,所以/上上0,可得出单调性,从而IF-xy)可判断选项B;由+=由单调性可判断选项C;由f(a)+f(b)=f-7I=/171由单调性可得与=,从而可判断选项D.+ab)2)-vab2【详解】由/()7(y)=/),令=y得f(0)-(0)=(詈)=f(0),得f(0)=0令=0得/(0)-(y)=/(E)=/(-y),即f(y)=-f(-y)所以f()为奇函数,故选项A正确.设一1xyv1,则一1三上0,所以/忙上01-孙U一孙J由条件可得/(x)-/(y)=即/(x)0z(-1)=3(Z7-1)012所以(

10、。)在(T1)有解.例如取则b=p所以存在非零实数,仇使得+=故选项D正确.故选:ABD14. 2【分析】将点的坐标代入函数解析式计算即可.【详解】由题意知,点(3,9)在y=/图像上,所以3=9,所以4=2.故答案为:215. 6【分析】利用给定函数等式的结构特征借助奇函数和偶函数的性质即可得解.【详解】因/(x),g(x)分别是定义在R上的偶函数和奇函数,则有/=/(T),g=-g(T),又/(x)-(x)=x5+x46,于是有/(1)(1)=/(-1)-(-1)=(-1)5+(-1)4+6=6,所以f(1)+g(1)=6.故答案为:616. -2-x+1.【分析】当冗0,求出/(一无)的表达式,再结合函数的奇偶性即可求出x0时函数的解析式.【详解】当冗O,所以/*(%)=(%)-+2-1=-x321因为y=()是奇函数,所以/(x)=-/(-X)=-(-X3+2-1)=-2-+1.故答案为:x3-2-v+117. (0,2)【分析】由己知得函数y=4()是减函数,由减函数的定义可解不等式.【详解】设g()=4(),由已知式变形为g(*)-gJ0化为g(x)g(2),又x(0,”),所以X

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 工作总结

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服