《SiC的电力电子器件的主要优势.docx》由会员分享,可在线阅读,更多相关《SiC的电力电子器件的主要优势.docx(5页珍藏版)》请在第一文库网上搜索。
1、SiC的电力电子器件的主要优势目录前言11 .碳化硅概述12 .SiC和Si性能大比拼23 .碳化硅功率器件34 .提高功率密度,提高性能35 .晶圆级衬底制造46 .碳化硅功率半导体的典型应用46.1.智能电网56.2. 轨道交通56.3. 新能源汽车56.4. 新能源并网56.5. 数据中心和通讯电源6前言汽车行业正在经历从内燃机(ICE)汽车到电动汽车(EV)的前所未有的转型。在全球遏制二氧化碳排放的法规的推动下,预计到45年,电动汽车将达到新车总销量的2030%。在强制性法规不断发展的背景下,消费者对电动汽车的接受度也在不断提高。目前,以碳化硅(SiC)为代表的第三代半导体材料的发展开
2、始受到重视,并在智能电网、电动汽车、轨道交通、新能源并网、开关电源、工业电机以及家用电器等领域得到应用,展现出了良好的发展前景。本文讨论了在电动汽车电力电子系统中快速采用碳化硅(SiC)和宽带隙半导体开关的好处,以及晶圆级衬底制造的价值。基于SiC的电力电子设备使电动汽车能够实现更长的行驶里程、更快的充电速度和更低的系统级总拥有成本。这些优势是通过利用SiC高度差异化的材料特性来设计更高效、更坚固和紧凑的动力总成系统来实现的。1 .碳化硅概述碳化硅(SiC)是第三代半导体材料代表之一,是C元素和Si元素形成的化合物。跟传统半导体材料硅相比,它具有高临界击穿电场、高电子迁移率等明显的优势,是制造
3、高压、高温、抗辐照功率半导体器件的优良半导体材料,也是目前综合性能最好、商品化程度最高、技术最成熟的第三代半导体材料,与硅材料的物理性能对比,主要特性包括:(1)临界击穿电场强度是硅材料近10倍;(2)热导率高,超过硅材料的3倍;(3)饱和电子漂移速度高,是硅材料的2倍;(4)抗辐照和化学稳定性好;(5)与硅材料一样,可以直接采用热氧化工艺在表面生长二氧化硅绝缘层。序号特性指标单位硅Si碳化科4H6iC1禁带宽度(E1)eV1.123.22临界击穿电场(耳)MVcn0.252.23电子迁移率(n)cm2V,s13509504空穴迁移率(p)cm2Vs4501205饱和电子漂移速度(VS)107
4、cms126热导率(,WZcmK1.54.97BaIiga品质因数115340比如,在相同耐压级别条件下,S1mosfet必须要做得比较厚,而且耐压越高厚度就会越越厚,导致材料成本更高。在栅极和漏极间有一个电压隔离区,这个区越宽,内阻越大,功率损耗越多,而SiC-MOSFET可以讲这个区域做得更薄,达到S1mosfet厚度的1/10,同时漂移区阻值降低至原来的1/300。导通电阻小了,能量损耗也就小了,性能得到提升。2 .SiC和Si性能大比拼SIC优势主要有以下三点:(1)更低的阻抗,带来更小尺寸的产品设计和更高的效率;(2)更高频率的运行,能让被动元器件做得更小;(3)能在更高温度下运行,
5、意味着冷却系统可以更简单。另外,SiCSBD(肖特基二极管)与Si-FRD的恢复特性对比,SiC-SBD的恢复过程几乎不受电流、温度影响;Sie-MoS与SiIGBTSiMOS的开关特性比较时,开关Off时的损耗大幅减少,体二极管的恢复特性尤其好。3 .碳化硅功率器件碳化硅功率半导体器件包括二极管和晶体管,其中二极管主要有结势垒肖特基功率二极管(JBS)、PiN功率二极管和混合PiN肖特基二极管(MPS);晶体管主要有金属氧化物半导体场效应晶体管(MOSFET)、双极型晶体管(BJT).结型场效应晶体管(JFET)、绝缘栅双极型晶体管(IGBT)和门极可关断晶闸管(GTO)等。相对Si功率器件
6、,SiC在二极管和晶体管的优势特征为:在二级管中,Si-FRD构造电压可以达到250V,而换成SiC电压则可达到4000V左右;晶体管中SiMOSFET可以做到900V,市场上也有150OV的,但特性会差些,而SiC产品电压可达3300V。4 .提高功率密度,提高性能虽然通过增加电池容量(也称为能量密度)来降低电池成本方面取得了重大进展,但电动汽车动力总成的功率密度也在增加,功率密度定义为功率效率与整体尺寸的比率,并且整体尺寸、重量和成本都在下降。这是通过利用SiC电源开关来实现的,特别是在动力总成系统中的车载充电器(OBC)和牵引逆变器中。以下是基于SiC的电力电子器件的主要优势:能够在更高
7、的温度下工作:与传统的硅基器件相比,SiC功率器件可以在更高的温度下工作,无需冷却组件和笨重的散热器材料。随着功率水平的提高(例如,在驱动电动汽车电机的牵引逆变器中),由于最大工作温度限制和允许结温,绝缘栅双极晶体管(IGBT)等硅功率器件的热管理变得具有挑战性。这一挑战需要在动力总成系统中集成冷却组件,例如带有水套的大型铜块,尤其是在功率水平可能高于IOokW的牵引逆变器中。这些冷却组件增加了车辆尺寸、重量和成本。相反,SiC的允许结温要高得多,为175及以上。此外,SiC的导热系数是硅的两到三倍。更高的载流能力:SiC功率器件可承载比硅功率器件高五倍的电流密度。这允许每个芯片的功率密度更高
8、,从而实现更小的器件和更紧凑的封装。更高的开关频率:基于SiC的功率器件还能够将开关频率提高10倍,牵引逆变器至少为20kHz,OBC的开关频率至少为CkHz。在这些更高的频率下,电容器和电感器等无源元件的尺寸可以大大减小,从而使系统整体尺寸显著缩小。高耐压:SiC还可实现更高的耐压、功率和开关效率,从而可以设计出损耗显著降低的大功率牵引逆变器。对于给定的功率水平和电池容量,SiC功率器件的尺寸可以更小,这转化为带有集成动力总成系统的EV子系统的组件。例如,在某些设计中,电机驱动和牵引逆变器被集成到一个一体式解决方案中,进一步减小了尺寸、重量和成本。通过消除或最小化用于冷却的机械块以及用于被动
9、元件和外壳的材料量,也可以在系统级别降低成本。5 .晶圆级衬底制造未来五年,SiC的最大市场是电力电子开关的电动汽车市场。为了跟上电动汽车市场的增长轨迹,SiC市场的增长速度预计将是电动汽车市场的两倍2。在过去的几十年中,SiC制造工艺中最重要的改进之一是以低成本生产无缺陷的晶圆级基板。众所周知,增加晶圆尺寸可以显著降低器件的成本。然而,增加晶圆尺寸给消除缺陷带来了挑战。SiC基板制造过程中出现的主要缺陷是堆垛故障、微管、凹坑、划痕、污渍和表面颗粒。所有这些缺陷都会对SiC器件的性能产生不利影响。此外,150毫米晶圆上更频繁地出现更高水平的缺陷率,这是当今SiC制造中最普遍的晶圆尺寸。经过数十
10、年的研发,只有少数供应商掌握了生产高质量、无缺陷的150亳米晶圆的艺术。这使得供应链能够大批量生产功率器件,并利用SiC的优越特性,这些特性已经存在了一段时间,如今使用无缺陷晶圆。仅生产这种高良率的高质量晶圆,就可以将少数SiC晶圆级衬底供应商与功率SiC供应链中的其他供应商区分开来。展望未来,这些基板供应商已经将目光投向了未来几年的200毫米。6 .碳化硅功率半导体的典型应用碳化硅功率器件具有高电压、大电流、高温、高频率、低损耗等独特优势,将极大地提高现有能源的转换效率,对高效能源转换领域产生重大而深远的影响,主要领域有智能电网、轨道交通、电动汽车、新能源并网、通讯电源等。6.1 .智能电网
11、目前碳化硅器件已经在中低压配电网开始了应用。未来更高电压、更大容量、更低损耗的柔性输变电对万伏级以上的碳化硅功率器件具有重大需求。碳化硅功率器件在智能电网的主要应用包括高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器等、电力电子变压器等装置中。除了高压器件以外,智能电网应用领域对大容量器件、压接封装具有独特的需求。6.2 .轨道交通轨道交通行业也是碳化硅功率器件主要指标应用行业之一。未来轨道交通对电力电子装置,比如牵引变流器、电力电子电压器等提出了更高的要求。采用碳化硅功率器件可以大幅度提高这些装置的功率密度和工作效率,将有助于明显减轻轨道交通的载重系统。目前,受限于碳
12、化硅功率器件的电流容量,碳化硅混合模块将首先开始替代部分硅IGBT模块。未来随着碳化硅器件容量的提升,全碳化硅模块将在轨道交通领域发挥更大的作用。6.3.新能源汽车新能源汽车是我国各级政府重点支持的碳化硅功率器件应用领域。碳化硅功率器件应用在电动汽车领域具有巨大的优势。碳化硅功率器件的高温特性和高热导性能可以显著减少散热器的体积和降低成本,其高频特性有助于提高电机驱动器的功率密度,减小体积,降低重量,并推动新型拓扑在电机驱动、充电桩和车载充电器中的应用,实现电动汽车半导体设备的全方位升级换代。6.4.新能源并网目前国际上光伏并网装备市场是碳化硅功率器件的第二大应用市场,占碳化硅功率器件市场超过30%以上。碳化硅光伏逆变器效率可以达到99%以上,能量转换损耗可以降低50%以上,这将极大地降低逆变器的成本和体积。风机并网装备对中高压碳化硅功率器件具有重大的需求,以代替硅器件串联或拓扑级联,显著减小装置的体积,大幅度提高风机变流器工作效率和可靠性,预计到2023年,碳化硅功率器件将进入风机并网装备市场。6.5.数据中心和通讯电源SiCMOSFET的高频特性使得电源电路中的磁性单元体积更小、重量更轻,SiCJBS反向恢复时间“零”特性使得电路的开关损耗大幅度降低,在数据中心和通讯电源中具有巨大优势前景。