《基于单片机和FPGA的频率特性测试仪的设计.docx》由会员分享,可在线阅读,更多相关《基于单片机和FPGA的频率特性测试仪的设计.docx(5页珍藏版)》请在第一文库网上搜索。
1、基于单片机和FPGA的频率特性测试仪的设计在学习电子线路、信号处理等蚯类课程时,高校学生只是从理论上理解真正的信号特征。不能真正了解或观察测试某些信号。而幅频特性和相频特性是信号最基本的特征.这里提出了基于单片机和相GA的频率特性测试仪的设计方案,可使学生在实践中真正观察和测试信号的频率特性。设计方案该系统设计采用扫频测试法。设频率响应为H(js),实系数线性时,不变系统在正弦信号X(n)=Acos(n)的激励下的稳态输出为y(n)。利用三角恒等式,将输入X(n)表示为两个复数指数函数之和:%(n)=g(n)+g*(n)式中:g(几)二;Aexp(J)exp(少号M若输入为exp(j3On),
2、线性时不变系统稳态输出为H(exp(jOn)exp(jOn)0根据线性性质可知,输入g(n)的响应v(n)为:同理,输入g*(n)的输出为v*(n)是V(I1)的复数共粗。于是输出y(n)的表达式:由上可知,当系统在正弦信号的激励下,输出响应达到稳态,这是与输入激励信号频率相同的正弦波,响应信号与激励信号幅值比为该频率的幅频响应值,而两者的相位差为相频特性值。因此采用扫频法测量频率特性。以单片机和FPGA为核心,利用FPGA通过DDS合成得到且频率由单片机控制的正弦波作为扫频信号,将其输入至待测网络,由峰值检波电路分别测量各扫频信号对应的输入网络信号和输出网络信号,并由其比例关系求得待测网络的
3、幅频特性。测量幅度的同时FPGA利用计数法测量出代表进出网络信号的相位差的脉冲数,然后送入单片机得到对应频率点的相角。将各频点得到的幅度特性和相位特性存入FPGA内部的幽中,并结合锯齿波显示在示波器上。同时,1CD还显示扫描频率的初始值、终止值和步进值。定点测量时,1CD显示单个频率点的幅度和相位。该系统设计框图如图1所示。1CD图1系统设计框图CT-簪硬件电路设计信号产生模块利用FPGA内部的DDS信号输出扫频信号经D/A转换器形成正弦信号。D/A转换器选用咽0800。DACO800具有8位分辨率,输出电流建立时间为100ns,8位的位宽,工作电压范围为4.518Vo因此,经DACo800所
4、形成的正弦信号有256个取样值,完全能满足系统精度要求。输出正弦信号的最高频率为200kHz,100ns的速率也满足系统要求。由于DACO800只具有从数字量到模拟电流输出量转换功能,因此需增加运篁放大/实现IV转换,其转换电路如图2所示。DDS信号输出需要加低通滤避来平滑滤波,以减少信号的谐波分量。inpu10.1167A9101112U1V1CB1B2B3B4B5B6B7B8VEEVDDIOUTToutVREF-VREFCOMPDAC08006-12V12V13p.1FV4.7kOU2rJ+15R114Rz把0.4Ju14output-12V8651F356N1614V基准C30.1FR3
5、4.7k图2DACO800转换电路图峰值检波电路峰值检刨原理是当输入电压通过正半周时,检波管导通,电容C充电,选取适当电容值,使其电容放电速度大于充电速度,这样,电容两端的电压可以保持在最大电压处,该电压通过由运算放大器构成的射随器(高阻隔离)输出电压峰值。这里运算放大器选用1F356,其输入失调电压和输入失调电流较小,输入阻抗大,可以很好隔离前后级。峰值检波电路如图3所示。图3峰值检波电路比较器电路在输入/输出端信号经无限放大进入过零比较器,产生与两信号同步变化的方波信号,可提供给FPGA进行相位差计数。过零比较器无相位延迟,其方波信号完全反应进、出网络的相位差。MAX9全是MAXIM公司的双通道高速低功耗、高精度电压比较器。该器件传播速度快(典型值为10ns),功耗低(单个比较器工作电流为6mA),每个比较器均有独立的锁存使能功能。由于FPGA对相位的测量是基于对下降沿的检测,为了产生边沿陡峭的方波,因此,选用MAX912组成的高速过零比较器,其电路如图4所示。+5V