四点共圆法在解几何题中的灵活运用.docx

上传人:lao****ou 文档编号:1071271 上传时间:2024-10-14 格式:DOCX 页数:5 大小:51.95KB
下载 相关 举报
四点共圆法在解几何题中的灵活运用.docx_第1页
第1页 / 共5页
四点共圆法在解几何题中的灵活运用.docx_第2页
第2页 / 共5页
四点共圆法在解几何题中的灵活运用.docx_第3页
第3页 / 共5页
四点共圆法在解几何题中的灵活运用.docx_第4页
第4页 / 共5页
四点共圆法在解几何题中的灵活运用.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《四点共圆法在解几何题中的灵活运用.docx》由会员分享,可在线阅读,更多相关《四点共圆法在解几何题中的灵活运用.docx(5页珍藏版)》请在第一文库网上搜索。

1、九年级数学四点共圆法在解几何题中的灵活运用教学设计作者李军课型:综合发习课教材分析本节课按照先学后教,当堂训练的自主高效课堂教学模式进行复习教学。充分利用多媒体教学设备优势,采用低起点、分层次、大容量、快节奏的方法,教师指导一学生自学一小组讨论一教师答疑一诊断反应一当堂训练,从而到达提高学生学习效率,减轻学生学习负担,取得更好的教学效果的目的。通过观察、操作、思考、解释、合作等教学活动,使学生体会到了创造的乐趣和成功的喜悦,使不同层次的学生思维水平与解题能力均有不同提高内容分本节必点,?四点以理作1的重E平与我艮的内容是以新人教版九年级上册课本P90-92点与圆的位置关系为起1直观展示点与圆的

2、位置关系为基点,按这种推理学习的思路,展开对匕圆法解几何难题的问题的探究,前几年的新教材对四点共圆有关的定删除,但是今年又增加了相关的定理,充分说明了四点共圆的知识点国性,以及其作为研究方法的多样性和灵活性,对于培养学生的思维水名高推理能力有着非常重要的作用教学目标设计知识技能通过复习进一步理解圆心到点的距离d和半径r的数量关系与点和圆的位置关系的对应与等价,从而实现位置关系与数量关系的相互转化,进而过渡到四点共圆问题,表达知识的普遍联系深入开展特性,体会数形结合思想,并且深化运用,丰富学生的研究方法.过程与方法遵循由简到难,由特殊到一般认知规律,在重视多种方法探究几何问题的同时,把几何推理放

3、在了更为重要的地位,以提升学生的思维品质。通过实验操作、观察归纳有助于学生直观得出结论,渗透数形结合的思想方法情感态度价值观通过对复习点与圆的位置关系及加深运用的学习过程,让学生体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论确实定性,在数学学习活动中获得成功的体验.锻炼克服困难的意志,建立自信心,提高学生的学习品质重点理解并运用点与圆位置关系与数量关系,四点共圆法难点用四点共圆法巧解难题教具准备电脑多媒体设备学情分析此阶段的学生虽然各方面的能力已有提高,但对于几何中的圆很多同学还是很头疼,他们只知道简单的圆的概念,对于知识点的运用还不熟练。因此,本节课需要加强能力训练,让学生自己推

4、理发现,得出结论,到达好的教学效果。并且在平常的教学中要时时处处与中考紧密结合,既重视知识的探索过程,又要注重各种技能的强化训练,教学时要充分考虑各个层次的学生,使不同的学生的在思维层次,思维水平,推理、演绎的能力都有不同的提高教学过程设计问题情境师生行为设计意图教学步骤一、用多媒体出示本节课的学习目标1 .灵活运用点与圆的位置关系;多点共圆的条件。2 .会用四点共圆法巧解难题教师展示本节课要到达的学习目标师通过提出问题,弓I发学生的思考,通过PPT课件,让学生很清楚的知道本节课学习的内容及要到达的目标,激起学生的学习欲望二、自学复习,自主探究活动1:复习看书,新人教版九年级上册课本P90-9

5、3点与圆的位置关系的知识要点并完成学案提出的学习任务多媒体分别按顺序展示思考1与思考2思考1:如图1,矩形ABCD中AB=3,AD=4,以A为圆心,矩形长AD为半径画圆,判定点B,C,D与圆A的置关系思考2:如图2,矩形ABCD,求证:它的的四个顶点在同一个圆上图2活动2:多媒体播放例1例题1.如图4,RtAABC与RtAADC共斜边,问D点是否在RtABC的外接圆上?你找到了A、B、C、D四点共圆的方法吗教师提出问留给学生足够的独题,立思考和自主探索的时间和空间鼓励学生积让学生复习知识点极投入到教为后面的学习打下学活动,根底思考2是根据d与r学生根据教的数量关系判断直师提出的问线与圆的位置关

6、,此题题是关于圆的题目,独立完成用圆却不见圆,只需师巡视找到线段间的关系即可,即证明多个点对于根底特到同一个定点的距别差的学生离相等即可教师要多关活动1作为复习稳注和辅导点固,并且已经提升了拨原来上新课应到达关注的思维水平,为活动学生参加活2的顺利开展作出动的的态良好的铺垫,运用多度,是否熟媒体利于快速而直练运用已学观的完成2道思考过的的知识题解决问题例1及变式题的学在思考2的习将学生的思维发根底上,让散,由特殊到一般,学生完成例然而解决问题的方1,操作、探法却是一样的寻共圆的条此题对于绝大局部件问题情境师生行为设计意图学生而言感觉是不难的,可以独立完成BDAOC及时查漏补缺,对有困难的学生给

7、予鼓励和帮助让学生把四点共圆的方法总结出来任务共斜边的两个直角三角形顶点共圆是常见的四点共圆法的典型,为本节课的难点例2的学习作一个铺垫B图4分析:关键抓住直角三角形斜边的中线性质,从而OA=OB=OC=OD,因此A、B、C、D四点在以0为圆心,以OA或OB、0C、OD为半径的圆上。或者证A、B、C、D在以AC为直径的圆上多媒体播放例题2例题2.如图5,矩形ABCD中,延长CB到E。使CE=CAoF为AE中点,求证BFFDAA师关注学生的解题思维是否已经开启,过程是否准确,标准;随时注意学生出现的错误做到及时纠正当学生明显感觉有困难的时候,可以让学生合作、讨论,教师可以适时的启发对于已经解出来

8、的同学给予肯定和表扬学生用自己的语言加以例2主要使学生深入理解并运用点与圆的位置关系,结合武汉的中考题特征,将其发散至四点共圆乃至多点共圆的方法来解决问题,非常有利于提高学生的思维水平,丰富学生的解题方法山重水复疑无路,柳暗花明又一村,四点共圆法可以化难为易,巧解难题。使学生明确证明几何题从两个方向突破1.突破或者转化条件。2.从结论反推,看需要什么条件才育缄立。使学生在数学活动中通过积极的、有效的参与,到达知识技能,数学思考,情感态度价值观维度的i二UJ、0CJBC图5分析;突破条件和从结论反推,猜测,是解几何问题的重要手段,此题证法较多,此题方法1抓住AACE是等腰三角形,F是底边AE的中

9、点,故考虑连接CF,那么CF_1AE,AACF与AACD是共斜边的两个直角三角形,那么A、D、C、F共圆,即F在的AACD外接圆上,又B也在的ACD外接圆上,那么D、C、B、F四点共圆,在利用圆内接四边形定理即可解决;方法2利用矩形的对角线的性质和三角形的中位线得OB=OC=OD=OF证明B、C、D、F四点共圆,也可以很快找到思路三、小结通过本节课的学习,对照本节课的学习目标,你有总结全面落实哪些收获发给学生当堂训练的作业四、当堂训练1、AB为。O的直径P为。O上任意一点,那么点关于AB的对称点P与。O的位置为()(A)在。O内(B)在。O外(C)在OO上(D)不能确定2、填空1、G)O的半径

10、10cm,A、B、C三点到圆心的距离分别为8cm、IOCm、12cm,那么点A、B、C与G)C)的位置关系是:点A在;点B在;点C在O2、G)O的半径6cm,当0P=6时,点A在;当OP时点P在圆内;当OP时,点P不在圆外。3、正方形ABCD的边长为2cm,以A为圆心2cm为半径作。A,那么点B在。A;点C在。A;点口在。A03 .四边形ABCD中,NADB=NACB=90。,试判断4 ZACD与NABD的数量关系5 .如图,矩形ABCD中,AC、BD相交于QE是CB延长线上一点,CF_1AE,垂足为F,求证:DFIBF6 .课后思考题(2023年武汉市四月调考第24题,略改编)如图,尸为正方

11、形A68边5。上任一点,8G_1AP于点G,在AP的延长线上取点,使AG=GE,连接BE,CE.(1)求证:BE=BC;(2)NCBE的平分线交AE于N点,连接fw,求证:ZAND=45;(提示:证明A、D、C、N四点共圆,原命题是求证ND+NB=NA)评价与反思送节复习锦接熊光季后数,当管制依的ai方致得膏敬老蟆蚊进行复打敬老,利用多咻体教学被备辅导教学,通过提出日春,激起老皮的老打做婆,先包老复灯知何点.就后解决茏婶梃出的问驳,2道思考验引出学习变点.进而突破难点.即四点共图法解决雍驳,教学安揶上从百苫圆的住型关系人手.进而引出四点共图的间数,并且步步睬入,突出变支.突破难支。可谓由嵌入深

12、,由端到睢,符合老的认知水华和芯理开展现律。新锦标猾出:“敌的熬当老灯活劲系饰单足地像频模仿S忆忆,劭不实践、五保索名安没合作是学幺学灯想学的鱼要方X。对于俐2雍克敢让考2克今今做衬卷,手取大多想学皮悦婚接受S理解。束用值起点、合屋次、大容量、快节奏的方弦,数婶相导T尊或自学小做商卷数婶率疑T修所攻立一岩量制依教学演程.M而到达梃由老幺学习致隼:由膏完鼠作业.作业也拜楮今屋寺圣,紧玄牯合锦膏加钠要点,求实教学目粽。锦后思考验直击中考热点盛,让老店余力的同学进一步体会熬学方法的独到的沙轮,体验鼠功的乐摄.名后的升学打下堡实的根条,乂而成较多幺锦业负捏,切实或实上公成负靖致的楷种。作者单位:蔡甸区索河中学通讯地址:蔡甸区索河中学

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 工作总结

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服