第十八章平行四边形全章教案.docx

上传人:lao****ou 文档编号:203143 上传时间:2023-05-19 格式:DOCX 页数:44 大小:200.28KB
下载 相关 举报
第十八章平行四边形全章教案.docx_第1页
第1页 / 共44页
第十八章平行四边形全章教案.docx_第2页
第2页 / 共44页
第十八章平行四边形全章教案.docx_第3页
第3页 / 共44页
第十八章平行四边形全章教案.docx_第4页
第4页 / 共44页
第十八章平行四边形全章教案.docx_第5页
第5页 / 共44页
亲,该文档总共44页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第十八章平行四边形全章教案.docx》由会员分享,可在线阅读,更多相关《第十八章平行四边形全章教案.docx(44页珍藏版)》请在第一文库网上搜索。

1、第十八章平行四边形本章概述本章分为平行四边形、特殊的平行四边形两节.是在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形;探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力.第18.1节主要是研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质定理的基础上,介绍两条平行线之间距离的概念;作为性质定理和判定定理的应用,探索并证明三角形中位线定理.第18.2节首先研究特殊的平行四边形一一矩形和菱形,在此基础上,进一步研究它们的特殊情

2、况,即同时具有两个特殊条件的平行四边形一一正方形,它是有一个角是直角的特殊菱形,又是有一组邻边相等的特殊矩形,所以正方形具有各种四边形所具有的性质.最后给出了正方形的概念,并让学生自己研究它的性质和判定方法.教学目标1 .理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2 .探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3 .了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4 .探索并证明三角形中位线定理.5 .通过经历平行四边形以及特殊平行四边形性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养学生的合情

3、推理能力.6 .通过平行四边形以及特殊平行四边形的性质定理、判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力.7 .通过分析平行四边形与各种特殊平行四边形概念之间的联系与区别,使学生进一步认识特殊与一般的关系.课时安排本章教学时间约需15课时,具体安排如下:18.1 平行四边形7课时18.2 特殊的平行四边形6课时数学活动小结2课时18.1平行四边形教案A第1教学内容平行四边形的性质.教学目标1 .理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2 .会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3 .培养学生发现问题、解决问题的能力及

4、逻辑推理能力.教学重点平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.教学难点运用平行四边形的性质进行有关的论证和计算.教学过程一、导入新课问题:平行四边形是常见的图形.观察下列图片,你能找出平行四边形的形象吗?你还能举出其他例子吗?设计目的:通过图片,让学生感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.过渡:那么,什么是平行四边形呢?二、新课教学教师引导学生回顾以前的知识,给出定义.两组对边分别平行的四边形叫做平行四边形.平行四边形用“O”表示,如图,平行四边形44C。记作“口ABCD”.注意:教师在教学时要结合图形

5、,让学生认识清楚什么是四边形的对边?三角形中有没有对边的概念?四边形中不相邻的边叫做对边;三角形中没有对边的概念,只有角所对的边.过渡:对于平行四边形,从定义出发,你能得出它的性质吗?探究:根据定义画一个平行四边形,观察它,除了“两组对边分别平行”外,它的边之间还有什么关系?它的角之间有什么关系?度量一下,和你的猜想一致吗?猜想1:两组对边分别相等.猜想2:NA=NC,NB=D.教师引导学生证明猜想,体会证明思路的分析方法和把四边形问题转化成三角形问题的基本想法.分析:上述猜想涉及线段相等、角相等.我们知道,利用三角形全等得出全等三角形的对应边、对应角都相等,是证明线段相等、角相等的一种重要的

6、方法.为此,我们通过添加辅助线,构造两个三角形,通过三角形全等进行证明.作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.证明:如右图,连接AC.-7n:AD/BC.ABCD,Z1=Z2,N3=N4.又AC是AABC和aCO4的公共边ABCCD.AD=CB,AB=CD,NB=ND.同理可以证明NBAD=NDCB.平行四边形具有以下性质:平行四边形的对边相等;平行四边形的对角相等.三、实例探究例如下图,在UBC。中,DEA.AB,BF1CDt垂足分别为E,F.求证AE=CH证明:四边形ABCO是平行四边形,.NA=NC,AD=CB.又NAED=NCF

7、B=90。,:AADE名ACBF.JAE=CF.四、课堂小结你学习了什么,还有那些问题?五、布JE作业1 .教材第43页练习第I题.2 .习题18.1第I、2题.教学内容平行四边形的性质.教学目标1 .掌握两条平行线之间的距离.2 .能运用平行四边形的性质解决有关平行四边形的计算问题.教学重点平行四边形性质的灵活应用.教学难点平行四边形性质的灵活应用.教学过程一、导入新课什么叫做四边形?什么叫平行四边形?平行四边形的对边和对角有什么性质?通过更习导入新课的教学.二、新课教学我们己经学习了点与点之间的距离、点到直线的距离.在此基础上,我们介绍两条平行线之间的距离.如下图,abycdfcd与a,b

8、分别相交于A,B,C,。四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.也就是说,两条平行线之间的任何两条平行线段都相等.由此,我们可以知道,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等,从而得出概念:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.如图,ab,A是4上的任意一点,AB1b,8是垂足,线段A8的长就是m之间的距离.问题:两条平行线之间的距离和点与点之间的距离、点到直线之间的距离有什么联系和区别呢?学生思考、师生共同归纳:点与点之间的距离是定义到点到直线的距离、两条平行线之间距离的基础.它们本质上是点

9、与点之间的距离.三、实例探究例已知:如下图,四边形ABCD是平行四边形,且N4。=NBAR(1)证明ACEF是等腰三角形;(2)若CE=8,求四边形438的周长.证明:(1)四边形CQ是平行四边形,:.ABEC,/E=NFAB.又,:AD/BC,INF=NEAD.*:ZEAD=BAF(已知),NE=NF,CE尸是等腰三角形.(2)VNE=NF=NEAD,:.AD=ED.;CE=8,AD+DC=8,6b,o=28=16.四、课堂小结任何两条平行线之间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.五、布置作业教材第43页练习第2题.第3候时教学内容平行四边形的性质.教学目标1

10、.掌握平行四边形对角线互相平分的性质.2 .能综合运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.3 .培养学生的推理论证能力和逻辑思维能力.教学餐点平行四边形对角线互相平分的性质,以及性质的应用.教学难点综合运用平行四边形的性质进行有关的论证和计算.教学过程一、导入新课1 .什么叫平行四边形?我们已经学习了它的哪些性质?2 .什么叫做两条平行线间的距离?它有什么性质?过渡:在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.二、新课

11、教学上面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.1 .平行四边形的性质3:平行四边形的对角线互相平分.探究:如下图,在2438中,连接AC,BD,并设它们相交于点0,OA与0C,OB与。有什么关系?你能证明发现的结论吗?教师先引导学生观察图形,获得对角线互相平分的感性认识,然后引导学生写出己知、求证和证明.我们猜想,在248CO中,0A=0C,OB=OD.与证明平行四边形的对边相等、对角相等的方法类似,我们也可以通过三角形全等证明这个猜想.请你结合下图完成证明.由此我们又得到平行四边形的一个性质:平行四边形的对角线互相平分.2 .平行四边形性质,定

12、理的综合应用同学们己经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.Ad例如下图,在SBC。中,AB=10,AD=S,AC/BC.求8C,CD,AC,OA的长,以及口ABCD的/()面积解:V四边形A5CO是平行四边形,:,BC=AD=S,CD=AB=0.VAC1BC,AfiC是直角三角形.根据勾股定理,又OA=OG1OA=-AC=3,2Sabcd=BCAC=8X6=48.三、课堂小结1 .性质定理及其他新知识的灵活应用,防止思维定势,方法僵化.2 .引导学生列表总结平行四边形的性质.四、布置作业习题18.1第7、8题.第4辑时教学内容平行四边形的

13、判定.教学目标1 .掌握平行四边形的判定定理,并会用它们进行有关的论证和计算.2 .使学生理解判定定理与性质定理的区别与联系.3 .会根据简单的条件画出平行四边形,并说明画图的依据是哪条定理.4 .使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题、解决问题的能力.5 .通过分析有关平行四边形的性质和判定定理之间的联系和区别.教学重点平行四边形的判定定理1、2、3的应用.教学难点判定定理和性质定理的区别.教学过程一、导入新课复习平行四边形的性质,导入新课的教学.二、新课教学思考:通过前面的学习,我们知道,平行四边形的对边相等、对角相等、对角线互相平分.反过来,交换

14、原命题的条件和结论,把原命题变成它的逆命题.即:对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?请学生根据自己的猜想填写下表:平行四边形的性质平行四边形的判定平行四边形的对边相等猜想1:平行四边形的对角相等猜想2:平行四边形的对角线互相平分猜想3:学生思考、讨论,填写表格.学生完成表格后,教师进一步提出问题:原命题正确,逆命题一定正确吗?通过问题,引导学生证明自己的猜想.可以证明,这些逆命题都成立.这样我们得到平行四边形的判定定理:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.下面我们以“对角线互相平分的四边形是平

15、行四边形”为例,通过三角形全等进行证明.如图,在四边形ABCo中,AC,8。相交于点0,且OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:*:OA=OC,OB=OD,NAOo=NCo8,ZOAD=ZOCB.DBC.同理AB/DC.四边形ABCD是平行四边形.小结:通过推理论证的真命题可以成为定理,我们把上述三个结论称为平行四边形的判定定理,加上平行四边形的定义,我们有四种判定平行四边形的方法.三、实例探究例如下图,D48C。的对角线AC,8。相交于点。,E,r是4C上的两点,并且AE=CF.求证:四边形BPDE是平行四边形.证明:四边形ABa是平行四边形,AO=CO,BO=DO.:AE=CF,/.AO-AE=CO-CFt即EO=FO.又80=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 汇报材料

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服