《增材制造知识介绍.docx》由会员分享,可在线阅读,更多相关《增材制造知识介绍.docx(13页珍藏版)》请在第一文库网上搜索。
1、增材制造知识介绍1增材制造的基本原理增材制造(Additive Manufacturing, AM)利用计算机控制3D 数据逐层堆积材料,是基于离散一堆积原理的高效净成形技术。自21世纪以来,增材制造以其独特的优势为制造业开辟了一个 新的先进制造技术,被众多国家视为未来产业发展的新增长点,是 工业4.0的核心,是具有深刻变革意义的新型生产方式。增材制造技术所具有的数字化、网络化、个性化和定制化等特 点,其将成为引领企业智能制造与创新发展的重要方式,是企业制 胜工业4.0时代的重要法宝。在20世纪90年代增材制造技术发展的初期,增材制造技术被 称为“快速原型制造技术”,研究学者主要基于该技术制备
2、非金属原 型,通过后续工艺实现金属零件的制备。具有代表性的工艺主要包括立体光造型(StereO lithography, SLA)、叠层制造(laminated object manufacturing, LOM) 熔融沉积 成形(fused deposition modeling, FDM) 三维喷印(three-dimensi onal printing, 3DP)等。激光选区烧结技术(selective laser sintering, SLS)利用激光束 扫描照射包覆有机胶黏剂的金属粉末,获得具有金属骨架的零件原 型,通过后续的高温烧结等后处理方式获得相对致密的金属零件。随着大功率激光
3、器的逐步应用,SLS技术随之发展为激光选区熔 化技术(selective laser melting, SLM),该技术利用高能量密度的 激光束照射预先铺覆好的金属粉末材料,将其直接熔化并凝固、成 形,获得金属制件。通过SLM技术可以成形接近全致密的精细金属零件,其性能可 达到同质锻件水平,高性能金属零件的直接制造是增材制造技术由 “快速原型”向“快速制造”转变的重要标志之一。在SLM技术发展的同时,另一种金属零件直接制造技术,激光 沉积制造技术(laser deposition manufacturing, LDM)等高性能金 属零件直接制造技术及设备涌现出来。LDM技术起源于美国Sandi
4、a 国家实验室的激光近净成形技术(laser engineering net shaping, L ENS),利用高能量激光束将同轴或旁轴喷射的金属粉末直接熔化, 并按照预定的轨迹逐层堆积凝固成形,获得尺寸形状接近于最终零 件的“近形”坯料制件,经过后续的小余量加工及后处理获得最终 的金属零件。SLM和LDM技术作为金属增材制造的两种主要方式,是当前研 究的热点内容,其在结构复杂、材料昂贵、小批量定制生产方面具 有低成本、高效率、高质量的突出优势,在航空航天等高端制造领 域实现了较为广泛的应用。在SLM工艺中,选区激光熔化以激光为热源,根据离散的三维 数据逐点扫描熔化粉床上的金属粉末,逐层凝固
5、叠加,实现零件成 形,具体过程如图1所示。聚焦激光束在振镜作用下,根据分层切 片离散化的零件三维数字模型,逐点扫描粉床上的金属粉层,扫描 后熔化凝固的金属粉末形成单层成形面及轮廓。随后基板下降,送粉仓上升,粉末在刮刀作用下平铺到粉床 上,激光继续开始扫描,熔化下一层,与上一层融为一体。如此重 复,层层叠加,得到与三维实体模型相同的金属零件,完成三维实 体的成形。为保证铺粉顺利和粉床的稳定,一般情况下,选区激光 熔化的成形平台均为水平面,而在竖直方向通过逐层叠加累积成 形。图1典型双缸SLM工艺成形过程示意图SLM技术采用的粉末主要为气雾化球形粉,粒径1050um,加 工的层厚为2050um0激
6、光聚焦直径小,熔池特征尺寸约为IOoU m,其成形精度约为0.050.10mm,表面粗糙度1020 u m,可以满 足大多无装配表面要求的金属零件的高精度快速制造,也是目前精 度最高的金属增材制造工艺之一。较高的成形精度使得SLM工艺适用于加工形状复杂的零件,尤 其是具有复杂内腔结构和具有个性化需求的零件。目前,国外的EO S、SLM Solutions Concept LaSer等公司以及国内的伯力特、华曙 高科等公司生产的SLM设备已经成功为航空航天、汽车、医学生物 等领域定制生产个性化零部件。LDM设备主要由激光系统(激光器及其光路系统)、运动执行机 构、送粉系统、气氛保护系统、质量调控
7、系统、在线监测反馈系统 及控制系统等模块构成,系统整体构成和布局如图2所示。图2 LDM工艺成形过程示意图LDM技术利用激光束作为热源,通过送粉系统将金属粉末送入 熔池,控制系统及软件将三维实体模型按一定厚度分层切片,并在 数控系统的控制下按照规定的运动轨迹及工艺参数来控制伺服系统 运动,伺服系统带动激光头或是工作台运动。根据沉积材料的不同,整个成形过程通常需要在氨气等惰性气 体氛围内进行,对于活性较高的合金材料,需要动态惰性密封箱体 保护的方式持续性地提供惰性气体保护氛围。同样,通过逐层沉积 的方式,最终形成三维实体零件。原则上也可以采用同步丝材送进 的方式来成形零件。LDM技术的主要特点为
8、:成形尺寸不受限制,可实现大尺寸零 件的直接成形;灵活性较高,无需支撑即可加工复杂零件;可用于 受损零件的直接修复及梯度零件的制造;成形件的综合力学性能优 异,热处理后的零件力学性能可达到同质锻件水平。但其成形后零件依然需要少量的机械加工,成形精度较SLM工 艺低。目前,国外的AerOMet、Optomec ROllS-ROyCe等公司,国内 的北京航空航天大学、西北工业大学、沈阳航空航天大学、北京鑫 精合、南京煜宸等企业及院校已经在航空、航天、船舶、能源等领 域就LDM技术进行了大量的成功应用及示范推广。2增材制造关键技术无论SLM技术还是LDM技术,控制成形件内部的残余应力及成 形零件的整
9、体变形都是增材制造亟须解决的关键技术。残余应力是 无外力作用时,以平衡状态残留于材料内部的应力。激光增材制造 具有加热、冷却速度极快的特点,在激光增材制造加热过程中,不 同部位温度不同,熔化不同步,冷却过程中凝固不同步,都会造成 不同部位膨胀收缩趋势不一致,从而产生热应力。同时由于不同部位温度不一致,沉积成形件不同部位物相变化 不同步,不同相之间的比容不一样,膨胀或收缩时相互牵制产生相 变应力。在激光增材制造成形过程中出现或是在成形完成后马上出 现的缺陷,如热裂纹、翘曲等,主要与热应力有关。成形件热裂纹 的形成机理如图3所示,快速凝固过程中低熔点共晶相凝固滞后造 成的晶间弱化,或者是脆硬相造成
10、的晶内或晶间脆化,不足以抵抗 快速凝固产生的较大热应力而造成了零件的热裂。图3增材制造热裂纹形成机理因此,如何调控与消减增材制造零件内的残余应力是SLM及LD M工艺所共同追求的关键技术。此外,对于SLM技术,激光光路优 化以及成形零部件致密度、表面质量、尺寸精度、强度和塑性的控 制是决定成形质量的关键技术。研究表明,SLM工艺的影响因素可达上百个,其中有10多个因 素具有决定性影响,工艺参数组合的选择直接影响成形过程的成 败;LDM技术致力于达到复杂结构实体零件的形状、成分、组织和 性能的最优化控制,同步实现金属零件快速精准成形和高性能控制 的目标。为此,必须建立相关的材料科学与技术、过程科
11、学与技术 和工程科学与技术的LDM的整体科学与技术构架,突破激光熔池温 度和几何形状控制技术、组织和性能控制技术及冶金缺陷检测与控 制技术是LDM工艺的关键技术。3增材制造过程的数字化增材制造智能控制首要对象为对结构设计模型的控制。满足零 件功能需求的前提下设计轻量化、整体化、低成本的高性能结构是 零件设计的中心任务。拓扑优化是根据指定载荷工况、性能指标和 约束条件合理分配材料、确定最优传力路径的结构优化设计方法。 相比尺寸优化和形状优化,拓扑优化不依赖于初始构型的选择,具 有更高的设计空间,是寻求高性能、轻量化、多功能创新结构的有 效设计方法。但传统制造方法很难完成在几何和尺度上如此复杂结
12、构的制造,而增材制造在复杂结构轻量化制造方面具有独特优势。 拓扑优化与增材制造技术的完美结合,可以在零件材料的设计空间 中找到最佳材料分布方案,从而提高材料利用率达到减轻重量的目 的。以航天器支架结构为例,典型复杂结构零件拓扑、尺寸优化设 计与增材制造过程如图4所示。如何根据零件的承载特征,实现拓 扑/点阵结构的智能设计,是增材制造结构智能化设计的关键。增材制造智能控制的另一个重要控制对象为成形工艺参数控制。影响增材制造零件性能的因素有上百种,其主要可以划分为4 大类:材料属性、加工环境、装备误差及工艺参数。通常情况下, 前三者在生产前已经确定,因此工艺参数是决定零件性能的关键因 素。调整工艺
13、参数的方法主要包括试验研究、模拟研究以及工艺优 化3种,如图5所示。.工艺 优化41图5调整工艺参数的方法及其联系其中,试验研究主要通过正交试验、响应面、田口法等回归分 析方法,建立激光功率、扫描速度、扫描间距、预热温度、分层厚 度与成形件致密度及力学性能指标的定量关系模型,从而能够实现 对成形件性能的预测及工艺参数的优化。但试验研究方法无法对成 形件过程中显微组织演化、温度场应力场演变的影响机理研究进行 有效揭示,无法从根本上解释工艺参数对成形件组织及性能的影响 机理。数值模拟的方法可以对成形件的宏观尺度的温度场、应力应变 场特征,介观尺度的粉末及熔池流动行为,微观尺度的晶粒生长过 程进行仿
14、真模拟,从而省去大量的试验操作,减少时间及经济成 本。采用有限元方法对成形过程中的温度场及应力场进行数值模 拟,可以对内应力的峰值位置及水平进行有效预测,并反馈给模型 设计及工艺参数,通过工艺参数数据库对成形工艺参数进行调节, 从而避免成形件的大尺寸变形及开裂的发生,提高成形件的成形精 度。采用有限容积法可以对增材制造过程中的流场、熔池形貌及孔 隙分布进行模拟预测,分析铺粉厚度、扫描速度、激光功率、保护 气氛种类等工艺参数对单道轨迹形态的影响,揭示粉末流动及熔池 内匙孔及飞溅产生等行为的影响机理,指导工艺参数的调控,避免 缺陷的产生,提高成形件的综合性能。采用相场法及元胞自动机等 方法可以对凝
15、固过程中的成核现象及晶粒生长过程进行模拟,分析 工艺参数对成形件内晶粒组织形态的影响规律,建立工艺参数一显 微组织一力学性能间的理论关联性。上述数值模拟的方法虽然可以对成形件内材料学的组织形态及 残余应力及变形情况进行预测,揭示不同工艺参数对成形件最终性 能的影响机理。但是受到模拟手段与计算方法的限制,制件表面质 量、服役行为等问题难以通过数值模拟进行求解。此外,通过这些物理驱动的方法不可能在短时间内快速准确地 预测整个增材制造过程。得益于人工智能技术的发展,通过优化算 法对工艺参数进行调整成为目前研究热点,数据驱动的模型也已广 泛应用于增材制造领域。这种模型的压倒性优势在于其不需要构建一系列
16、基于物理过程的方程。取而代之的是,它们会根据以前的数 据自动学习输入特征和输出目标之间的关系。将试验或数值模拟得 到的结果作为数据样本,采用工艺优化算法训练模型,从而对不同 工艺参数的制件性能指标进行预测与优化。将制样的制造精度、表面质量、致密度、力学性能等作为评判指标,对不同工艺参数得到 的成形件标准件作为数据集进行训练,应用最多的工艺优化方法为 采用专家系统与自适应神经网络(NN)相结合的方法自动优化工艺参数,如图6所示。输入输入结构 现则输出结构激光功率扫描速度打描间距打描长度图6自适应神经网络对增材制造工艺参数的优化过程4神经网络在增材制造中的应用神经网络(NN)的机器学习方法已经应用到增材制造的各个环 节,如结构模型设计、过程监测、工艺一性能评价等环节。在结构模型设计环节,ChoWdhUry和Anand提出了一种NN算 法来直接