《小学改扩建项目室外风环境模拟分析报告.docx》由会员分享,可在线阅读,更多相关《小学改扩建项目室外风环境模拟分析报告.docx(25页珍藏版)》请在第一文库网上搜索。
1、室外风环境模拟分析报告项目名称:小学改扩建项目1项目概况31.1 总平面图41.2 三维视图52 .计算依据63 .参考标准64 .计算原理64.1 风场计算域64.1.1 冬季工况风场计算域64.1.2 夏季工况风场计算域74.1.3 过渡季工况风场计算域84.2 网格划分84.3 边界条件104.3.1 入口与出口边界条件104.3.2 壁面边界条件114.4 湍流模型H4.5 求解计算114.6 风速放大系数计算135 .结果分析145.1 工况表145.2 冬季工况145.2.1 人行区域风速达标分析145.2.2 人行区域风速放大系数达标分析155.2.3 冬季工况风速/风速放大系数
2、达标结果汇总165.2.4 建筑迎风面和背风面风压分析165.3 夏季工况185.3.1 人活动区域无风区计算分析195.3.2 人活动区域旋涡区分析195.3.3 人活动区域旋涡区/无风区达标结果汇总205.3.4 外窗内外表面风压差达标分析205.4 过渡季工况215.4.1 人活动区域无风区计算分析225.4.2 人活动区域旋涡区分析225.4.3 人活动区域旋涡区/无风区达标结果汇总235.4.4 外窗内外表面风压差达标分析235.5 结论255.5.1 冬季工况达标判断255.5.2 过渡季、夏季工况达标判断251项目概况小学改、扩建项目建设地址位于,主要包括学生食堂、风雨球场以及新
3、建、改造教学楼,具体经济技术指标详总图。本项目按照绿色建筑评价标准GB/T50378-2019.成都市绿色建筑施工图设计与审查技术要点(2023版)进行绿色建筑设计,设计目标为二星级。项目效果图如下所示:图1.1项目效果图VENT1.2三维视图VENT图1.27三维视图2计算依据本项目主要参照资料为:1 .绿色建筑评价标准GB/T50378-20192 .建筑通风效果测试与评价标准JGJ/T30920133 .绿色建筑评价技术细则4 .委托方提供的总平面图、建筑专业设计图纸、设计效果图等图纸资料3参考标准室外风环境评价依据为绿色建筑评价标准GB/T50378-2019中有关室外风环境的条目要求
4、。具体要求如下:5 .2.8场地内风环境有利于室外行走、活动舒适和建筑的自然通风。评分规则如下:1冬季典型风速和风向条件下,建筑物周围人行区距地高15m处风速低于5ms,户外休息区、儿童娱乐区风速小于2ms,且室外风速放大系数小于2,得3分;除迎风第一排建筑外,建筑迎风面与背风面表面风压差不超过5Pa,得2分。2过渡季、夏季典型风速和风向条件下,场地内人活动区不出现涡旋或无风区,得3分;50%以上可开启外窗室内外表面的风压差大于0.5Pa,得2分。4计算原理4.1 风场计算域进行室外风场计算前,需要确定参与计算风场的大小,在流体力学中称为计算域,通常为一个包围建筑群的长方体或正方体,本项目的风
5、场计算域信息如下:4.1.1 冬季工况风场计算域表4.1T冬季工况风场计算域信息顺风方向尺寸(m)474宽度方向尺寸(m)424高度方向尺寸(m)119VENT图4.1T冬季工况风场计算域图示4.1.2 夏季工况风场计算域表4.1-2夏季工况风场计算域信息顺风方向尺寸(m)456宽度方向尺寸(m)413高度方向尺寸(m)H9VENT图4.1-2夏季工况风场计算域图示4.1.3 过渡季工况风场计算域表4.1-3过渡季工况风场计算域信息顺风方向尺寸(m)456宽度方向尺寸(m)413高度方向尺寸(m)119VENT图4.1-3过渡季工况风场计算域图示注:不同季节因风向不同,为了最大限度反映项目周围
6、区域风场特征,根据不同风向划定不同的计算域。4.2 网格划分网格划分决定着计算的精确程度并影响计算速度,网格太密会导致计算速度下降并浪费计算资源;网格太疏导致计算精度不足结果不够准确,合理的网格方案需要考虑对计算域中不同的部分采用不同的网格方案。建筑周围,远离建筑的区域,建筑物轮廓有明显的局部特征(如尖角,凹槽,凸起等细微的外装饰),贴近地面的区域,都需要采用不同的网格方案。下面为本项目所采用的加密方案:1)普通网格:指除靠近地面和建筑以外的网格,通常不需要特别加密处理 分弧精度:对于有圆弧特征的建筑局部,把圆弧分解为线段时,弦到弧的最大距离; 初始网格大小:初始化时候正交网格的大小,单位米(
7、m); 最小细分级数:初始网格至少细分的级数; 最大细分级数:初始网格最多细分的级数:2)地面网格靠近建筑物的区域称为近场,远离建筑物的区域称为远场。近场的地面网格需要加密,对应地面细分级数较大;而远场地面对应网格较疏,地面细分级数较小。3)附面层网格贴近地面/建筑壁面的空气流动,因为空气自身粘性而受到地面/建筑表面阻滞作用,紧贴地面/建筑壁面的空气流动速度几乎为0,且速度随着与地面/建筑壁面距离的增加而增加,使得靠近地面的一定厚度空气层的流速呈现梯度分布,最终达到主流速度,而这层空气层通常称为流动边界层或者附面层。在做计算流体力学分析时,为了获取边界层/附面层内的空气流动特征,提升分析精度,
8、宜对其中的网格进行分层加密,形成附面层网格, 地面附面层数:地面附面层网格的层数; 建筑附面层数:建筑表面附面层网格的层数;以下为本项目的网格划分信息,上述网格方案对网格的控制分别体现在相应的网格参数中:表4.2-1冬季网格划分信息网格总数(个)网格类型网格尺寸430808普通网格分弧精度(m)0.24初始网格(m)8.0最小细分级数1最大细分级数2地面网格远场细分级数1近场细分级数2附面层地面附面层数2建筑附面层数0表4.2-2夏季网格划分信息网格总数(个)网格类型网格尺寸420749普通网格分弧精度(m)0.24初始网格(m)8.0最小细分级数1最大细分级数2地面网格远场细分级数1近场细分
9、级数2附面层地面附面层数2建筑附面层数0表4.2-3过渡季网格划分信息网格总数(个)网格类型网格尺寸420749普通网格分弧精度(m)0.24初始网格(m)8.0最小细分级数1最大细分级数2地面网格远场细分级数1近场细分级数2附面层地面附面层数2建筑附面层数0注:前述计算域随风向不同,所以相同的网格方案会产生不同的网格数量。4.3边界条件图4.3-1风场边界类型示意图上图展示了计算域中风场边界的类型,本小节将给出不同边界的边界条件。4.3.1人口与出口边界条件D入口风速梯度本项目中,入口边界条件主要包括不同工况下的风速和风向数据,其中入口风速采用下列梯度风:/V=v(4.3-1)式中:V,z任
10、何一点的平均风速和高度;VZR、ZR一标准高度处的平均风速和标准高度值,建筑结构荷载规范GB50009-2012规定自然风场的标准高度取IOm,此平均风速对应入M风设置的数值;一地面粗糙度指数,本项目为0.28;表4.3-1地面粗糙度指数参考值参考标准地貌类别地面粗糙度指数绿色建筑评价技术细则空旷平坦地面0.14城市郊区0.22大城市中心0.28注:上述地面粗糙度指数参考绿色建筑评价技术细则关于4.2.6节条文说明,也可酌情参考建筑通风效果测试与评价标准JGJT3099-2013中5.2.1节2)出口边界条件本项目采用自由出流作为出口边界条件。4. 3.2壁面边界条件风场的两个侧面边界和顶边界
11、设定为滑移壁面,即假定空气流动不受壁面摩擦力影响,模拟真实的室外风流动。风场的地面边界设定为无滑移壁面,空气流动要受到地面摩擦力的影响。4.4 湍流模型湍流模型反映了流体流动的状态,在流体力学数值模拟中,不同的流体流动应该选择合适的湍流模型才会最大限度模拟出真实的流场数值。本项目依据绿色建筑评价技术细则推荐的标准k-湍流模型进行室外流场计算。下表为几种工程流体中常见的湍流模型适用性:表4.4-1常用湍流模型适用范围常用湍流模型特点和适用工况standardk-模型简单的工业流场和热交换模拟,无较大压力梯度、分离、强曲率流,适用于初始的参数研究,一般的建筑通风均适用。RNGk-模型适合包括快速应
12、变的复杂剪切流、中等旋涡流动、局部转撅流如边界层分离、钝体尾迹涡、大角度失速、房间通风、室外空气流动。rea1izab1ek-模型旋转流动、强逆压梯度的边界层流动、流动分离和二次流,类似于RNG。4.5 求解计算1 .数学模型本项目采用CFD(计算流体力学)方法对风场进行求解,即在所分析的计算域内建立流体流动的质量守恒、动量守恒和能量守恒建立数学控制方程,其一般形式如下所示:一,再+dipUIHdiv9gradOkSr该式中的可以是速度、湍流动能、湍流耗散率以及温度等物理量,参照下表I4.5-1计算流体力学的控制方程名称变量邑连续性方程1OOX速度U=+P+一xua苍)+(vyh+wyy速度V
13、P+一yxAu、+,加、一次i+Z速度W%+4P+一zxuA(v+3卬、-PS湍流动能kakeffGk+gbP湍流耗散Gt(Gk+C3eGb)-C2p-R1kk温度T旦+4PrS上表中的常GiS2数如下:/Isu=29dujui-+xixi1JZG,=tan10.3679Ctak2S=y2SiiSg9V&%6-C19=0.85c=0.7,C=0.0845,,%=%由G=14。一1.3929290.632Q.=1.689+2.392Cw2+W2Zo-13929a0+2.392螳计算其中aQ=10o如果则ak=a1-393r=。严TiFqo)X4=0.012(1+)k,其中n=SkI,%=4.382 .算法说明本项目采用SIMP1E算法求解上述方程组。4.6 风速放大系数计算风速放大系数反映了高层建筑对风速的放大作用,通常指建筑物周围离地面高1.5m处最大风速与开阔区域同高度风速之比。可采用下式平均风速随高度变化的指数函数进行风速放大系数的计算:(4.6-1)(4.6-2)其中:M一风速放大系数;Vk55一一建筑物周围距离地面高1.5米处最大风速,该风速通过前述风速计算获取,对应1.5高度处风速云图