《家安全监管总局关于加强精细化工反应 安全风险评估工作的指导意见(安监总管三〔2017〕1号).docx》由会员分享,可在线阅读,更多相关《家安全监管总局关于加强精细化工反应 安全风险评估工作的指导意见(安监总管三〔2017〕1号).docx(15页珍藏版)》请在第一文库网上搜索。
1、国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见(安监总管三(2017)1号)各省、自治区、直辖市及新疆生产建设兵团安全生产监督管理局,有关中央企业:为加强精细化工企业(以下简称企业)安全生产管理,进一步落实企业安全生产主体责任,强化安全风险辨识和管控,提升本质安全水平,提高企业安全生产保障能力,有效防范事故,现就加强精细化工反应安全风险评估工作提出如下指导意见:一、充分认识开展精细化工反应安全风险评估的意义精细化工生产中反应失控是发生事故的重要原因,开展精细化工反应安全风险评估、确定风险等级并采取有效管控措施,对于保障企业安全生产意义重大。开展反应安全风险评估也是企业获取安全生
2、产信息,实施化工过程安全管理的基础工作,加强企业安全生产管理的必然要求。当前精细化工生产多以间歇和半间歇操作为主,工艺复杂多变,自动化控制水平低,现场操作人员多,部分企业对反应安全风险认识不足,对工艺控制要点不掌握或认识不科学,容易因反应失控导致火灾、爆炸、中毒事故,造成群死群伤。通过开展精细化工反应安全风险评估,确定反应工艺危险度,以此改进安全设施设计,完善风险控制措施,能提升企业本质安全水平,有效防范事故发生。二、准确把握精细化工反应安全风险评估范围和内容(-)企业中涉及重点监管危险化工工艺和金属有机物合成反应(包括格氏反应)的间歇和半间歇反应,有以下情形之一的,要开展反应安全风险评估:1
3、国内首次使用的新工艺、新配方投入工业化生产的以及国外首次引进的新工艺且未进行过反应安全风险评估的;2 .现有的工艺路线、工艺参数或装置能力发生变更,且没有反应安全风险评估报告的;3 .因反应工艺问题,发生过生产安全事故的。(二)精细化工生产的主要安全风险来自于工艺反应的热风险。开展精细化工反应安全风险评估,要根据精细化工反应安全风险评估导则(试行)(见附件)的要求,对反应中涉及的原料、中间物料、产品等化学品进行热稳定测试,对化学反应过程开展热力学和动力学分析。根据反应热、绝热温升等参数评估反应的危险等级,根据最大反应速率到达时间等参数评估反应失控的可能性,结合相关反应温度参数进行多因素危险度两
4、古,确定反应工艺危险度等级。根据反应工艺危险度等级,明确安全操作条件,从工艺设计、仪表控制、报警与紧急干预(安全仪表系统)、物料释放后的收集与保护,厂区和周边区域的应急响应等方面提出有关安全风险防控建议。三、强化精细化工反应安全风险评估结果运用,完善风险管控措施(-)涉及的反应工艺危险度被确定为2级及以上的,要根据危险度等级和评I古建议,设置相应的安全设施和安全仪表系统;反应工艺危险度被确定为4级及以上的,在全面开展过程危险分析(如危险与可操作性分析)基础上,通过风险分析(如保护层分析)确定安全仪表的安全完整性等级,并依据要求配置安全仪表系统;对于反应工艺危险度被确定为5级的,相关装置应设置在
5、由防爆墙隔离的独立空间中,并设计超压泄爆设施,反应过程中操作人员不应进入隔离区域。企业要优先通过开展工艺优化或改变工艺路线降低安全风险。(二)企业要把反应安全风险评估作为安全管理的重要内容,新建项目要以反应安全风险评估结果为依据,开展工艺设计及安全设施设计,保证各项安全控制措施落实到位;相关在役装置要根据反应安全风险评估结果,补充和完善安全管控措施,及时审查和修订操作规程。(三)企业要保证设备设施满足反应工艺安全要求,根据反应安全风险评估情况,建立关键设备设施清单,定期开展检查、维护和维修,要确保泄放、冷却、降温等设施和安全仪表等系统的完好、可用。要开展有针对性的岗位操作培训I,保证岗位操作人
6、员熟练掌握本岗位反应安全风险,严格执行岗位操作规程,不断提升操作技能。要根据反应安全风险评估结果,制定岗位应急处置方案和事故专项应急预案,强化定期演练,提高应急处置能力。四、工作要求(-)反应安全风险评估工作专业性强,技术要求高,各有关企业要高度重视,聘请具备相关专业能力的机构组织开展评估。企业要加大对工艺反应测试分析条件的投入,培育专业工程技术人员,逐步形成自身开展反应安全风险评估工作的能力。(二)有关企业要确保列入评估范围的新建装置在编制可行性研究报告或项目建议书前,完成反应安全风险评估。对相关在役装置要制定计划逐步开展,根据评估结果完善风险控制措施,努力降低安全风险。从2023年开始,凡
7、列入评估范围,但未进行反应安全风险评估的精细化工生产装置,不得投入运行。(三)地方各级安全监管部门要结合本地区实际,指导和督促相关企业开展反应安全风险评估,积极跟踪评估结论,掌握并研判本地区有关企业的风险情况。积极培育具备条件的反应安全风险两帆构,鼓励具备条件的有关科研单位提供技术服务支持,加强技术人才队伍培养,配备完善实验测试设施,规范服务工作,提高反应安全风险评估能力和质量。请各省级安全监管局及时将本指导意见精神传达至本辖区各级安全监管部门及有关企业。附件:精细化工反应安全风险评估导则(试行)国家安全监管总局2017年1月5日附件精细化工反应安全风险评估导则(试行)1范围本导则给出了精细化
8、工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。本导则适用于精细化工反应安全风险的评估。精细化工生产的主要安全风险来自工艺反应的热风险。开展反应安全风险评估,就是对反应的热风险进行评估。2术语和定义2.1 失控反应最大反应速率到达时间TMRad失控反应体系的最坏情形为绝热条件。在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。TMRad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。2.2 绝热温升ATad在冷却失效等失控条件下,体系不能
9、进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。2.3工艺温度Tp目标工艺操作温度,也是反应过程中冷却失效时的初始温度。冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操
10、作温度。2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言技术最高温度为反应容器最大允许压力时所对应的温度。2.5失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。在物料累积最大时,体系能够达到的最高温度称为失控体系能达到的最高温度。MTSR与反应物料的累积程度相关,反应物料的累积程度越大,反应发生失控后,体系能达到的最高温度MTSR越高。2.6精细化工产品原化学工业部对精细化工产品分为
11、:农药、染料、涂料(包括油漆和油墨)、颜料、试剂和高纯物、信息用化学品(包括感光材料、磁性材料等能接受电磁波的化学品)、食品和饲料添加剂、粘合剂、催化剂和各种助剂、化工系统生产的化学药品(原料药)和日用化学品、高分子聚合物中的功能高分子材料(包括功能膜、偏光材料等)等11个大类。根据国民经济行业分类(GB/T4754-2011),生产精细化工产品的企业中反应安全风险较大的有:化学农药、化学制药、有机合成染料、化学品试剂、催化剂以及其他专业化学品制造企业。3反应安全风险评估3.1 工艺信息工艺信息包括特定工艺路线的工艺技术信息,例如:物料特性、物料配比、反应温度控制范围、压力控制范围、反应时间、
12、加料方式与加料速度等工艺操作条件,并包含必要的定性和定量控制分析方法。3.2 实验测试仪器反应安全风险评估需要的设备种类较多,除了闪点测试仪、爆炸极限测试仪等常规测试仪以外,必要的设备还包括差热扫描量热仪、热稳定性筛选量热仪、绝热加速度量热仪、高性能绝热加速度量热仪、微量热仪、常压反应量热仪、高压反应量热仪、最小点火能测试仪等;配备水分测试仪、液相色谱仪、气相色谱仪等分析仪器设备;具备动力学研究手段和技术能力。反应安全风险评估包括但不局限于上述设备。3.3 实验能力反应安全风险评估单位需要具备必要的工艺技术、工程技术、热安全和热动力学技术团队和实验能力,具备中国合格评定国家认可实验室(CNAS
13、认可实验室)资质,保证相关设备和测试方法及时得到校验和比对,保证测试数据的准确性。4反应安全风险评估方法4.1 单因素反应安全风险评估依据反应热、失控体系绝热温升、最大反应速率到达时间进行单因素反应安全风险评估。4.2 混合叠加因素反应安全风险评估以最大反应速率到达时间作为风险发生的可能性,失控体系绝热温升作为风险导致的严重程度,进行混合叠加因素反应安全风险评估。4.3 反应工艺危险度评估依据四个温度参数(即工艺温度、技术最高温度、最大反应速率到达时间为24小时对应的温度,以及失控体系能达到的最高温度)进行反应工艺危险度评估。对精细化工反应安全风险进行定性或半定量的评估,针对存在的风险,要建立
14、相应的控制措施。反应安全风险评估具有多目标、多属性的特点,单一的评估方法不能全面反映化学工艺的特征和危险程度,因此,应根据不同的评估对象,进行多样化的评估。5反应安全风险评估流程5.1 物料热稳定性风险评估对所需评估的物料进行热稳定性测试,获取热稳定性评估所需要的技术数据。主要数据包括物料热分解起始分解温度、分解热、绝热条件下最大反应速率到达时间为24小时对应的温度。对比工艺温度和物料稳定性温度,如果工艺温度大于绝热条件下最大反应速率到达时间为24小时对应的温度,物料在工艺条件下不稳定,需要优化已有工艺条件,或者采取一定的技术控制措施,保证物料在工艺过程中的安全和稳定。根据物质分解放出的热量大
15、小,对物料潜在的燃爆危险性进行评估,分析分解导致的危险性情况,对物料在使用过程中需要避免受热或超温,引发危险事故的发生提出要求。5.2 目标反应安全风险发生可能性和导致的严重程度评估实验测试获取反应过程绝热温升、体系热失控情况下工艺反应可能达到的最高温度,以及失控体系达到最高温度对应的最大反应速率到达时间等数据。考虑工艺过程的热累积度为100%,利用失控体系绝热温升,按照分级标准,对失控反应可能导致的严重程度进行反应安全风险评估;利用最大反应速率到达时间,对失控反应触发二次分解反应的可能性进行反应安全风险评估。综合失控体系绝热温升和最大反应速率到达时间,对失控反应进行复合叠加因素的矩阵评估,判
16、定失控过程风险可接受程度。如果为可接受风险,说明工艺潜在的热危险性是可以接受的;如果为有条件接受风险,则需要采取一定的技术控制措施,降低反应安全风险等级如果为不可接受风险,说明常规的技术控制措施不能奏效,已有工艺不具备工程放大条件,需要重新进行工艺研究、工艺优化或工艺设计,保障化工过程的安全。5.3 目标反应工艺危险度评估实验测试获取包括目标工艺温度、失控后体系能够达到的最高温度、失控体系最大反应速率到达时间为24小时对应的温度、技术最高温度等数据。在反应冷却失效后,四个温度数值大小排序不同,根据分级原则,对失控反应进行反应工艺危险度评古,形成不同的危险度等级;根据危险度等级,有针对性地采取控制措施。应急冷却、减压等安全措施均可以作为系统安全的有效保护措施。对于反应工艺危险度较高的反应,需要对工艺进行优化或者采取有效的控制措