《《指数函数与对数函数》第7课时 对数函数的概念.docx》由会员分享,可在线阅读,更多相关《《指数函数与对数函数》第7课时 对数函数的概念.docx(5页珍藏版)》请在第一文库网上搜索。
1、4.4.1对数函数的概念一.课时教学内容对数函数的概念二.课时教学目标1.从实际问题情境中,抽象出对数函数的概念,认识与指数函数间的关系;2 .理解对数函数的概念,了解对数函数的实际意义.3 .借助信息技术和计算工具感受对数函数的变化,发展数学运算和数学抽象的素养.三.教学重难点教学重点:对数函数概念的形成.教学难点:对指数函数与对数函数内在联系的把握.四.教学过程(一)创设情境师:观看良渚文化视频,引导学生思考问题1考古学家如何测量良渚古城的年代.当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.问题2按照上
2、述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系?通过指数函数的学习,我们知道,当生物死亡年数为X,死亡生物体内碳/114含量为y,那么y=(x0,+8).这就是我们学过的指数函数.当我们知道生物的死亡时间,通过指数函数,我们就能知道生物体内碳14的含量.心0)得至1卜二现问题3由死亡生物体内碳14含量,如何求出它的死亡年数呢?根据指数与对数的关系,y(o0,且4H1)叫做对数函数,其中X是自变量,定义域是(0,+00).问题8类比事函数与指数函数的定义,对数函数的结构特征是什么?对数函数的结构特征:1对数符号前面的系数为1;2,对数的底数是不等于1的正常数;3.对数的真数仅有自变量工
3、.设计意图:通过对指数函数回顾,类比得出对数函数的概念质,发展学生逻辑推理,数学抽象、数学运算等核心素养。(三)课堂互动探究探究一对数函数的概念例1下列函数中,哪些是对数函数?0),=1ogrtX2(a0,且41);(2)y=1og2x-1;(3)y=21og8x;(4)y=Iogra(x0,且X1)(5)y=Iog5X学生回答方法总结从“三个方面”判断一个函数是否是对数函数1对数符号前面的系数为1;2 .对数的底数是不等于1的正常数;3 .对数的真数仅有自变量X.跟踪训练1若函数/(戈)=(1+。-5)108d是对数函数,贝IJa=.例2求下列函数的定义域:(Oy=1og3x2;(2)y=I
4、ogrt(4-x)(a0,fi1).问题6:求解的依据是什么?据此求解的步骤是什么?师生活动:教师利用追问引导学生,一切从定义出发.对数函数y=1og.x,(0,且。工1)的定义域是(O,+),那么(1)中的Y和(2)中的(4一幻的取值范围就是(O,+),于是得到不等式,将定义域问题转化为解不等式问题,进而求出定义域.(1)解:由对数函数的概念可知:因为/0,即XWO,所以函数y=10g3V的定义域是xx(2)因为40,即/4,所以函数丁=1084(4-彳)的定义域是小4.方法总结求含对数式的函数定义域关键是真数大于0,底数大于O且不为1.如需对函数式变形,需注意真数底数的取值范围是否改变.跟
5、踪训练2求下列函数的定义域:OVW=1g(x-2)+-i-;(2)(x)=1og,v+1(16-4x).x-3例3假设某地初始物价为1,每年以5%的增长率递增,经过y年后的物价为工(1)该地的物价经过几年后会翻一番?(2)填写下表,并根据表中的数据,说明该地物价的变化规律.物价X12345678910年数y0解:(1)由题意可知,经过y年后物价X为x=(1+5%)v,即X=1O5(y0,+).由对数与指数间的关系,可得产。&.05工,工1,400)物价翻一番,即x=2,代入函数可得y=1og1052*14.,由计算工具可得y14.(2)根据函数y=1og3x,x1,+co),利用计算工具,可得
6、下表:物价X12345678910年数y0142328333740434547由表中的数据可以发现,该地区的物价随时间的增长而增长,但大约每增长1所需要的的年数在逐渐缩小.设计意图:通过典例问题的分析,让学生进一步熟悉对数函数的概念性。培养逻辑推理核心素养。(四)课堂小结(1)回顾本节学习过程,本节课研究了哪些问题,获得了哪些知识?有哪些研究经验和解题经验?(2)你还有什么问题?设计意图:学生自己总结本节课所学知识,加深对学习内容的理解,小组讨论学习过程中学生的合作学习意识、与人沟通交流能力都将有所提升。(五)布置作业必做题:教材131页练习1,2,3选做题:尝试画出耳=1%不和X)=R)g/的图象,观察其函数特点设计意图:考虑到学生的个体认知差异,基于做作业是以学习内容的巩固性和发展性为出发点,分层次布置作业。设计必做题和选做题,必做题是对本节课学习内容的检验和反馈,选做题是为下节课的学习做铺垫。(六)板书设计4.4.1对数函数的概念1 .定义2 .对数函数的结构特征