《成对数据的统计分析 第4课时 一元线性回归模型及其应用.docx》由会员分享,可在线阅读,更多相关《成对数据的统计分析 第4课时 一元线性回归模型及其应用.docx(20页珍藏版)》请在第一文库网上搜索。
1、8.2一元线性回归模型及其应用(3课时,单元教学设计)第一课时刘谦(安徽省淮南第一中学)第二、三课时石伟伟(安徽省寿县第二中学)1单元内容与内容解析1.1内容一元线性回归模型,一元线性回归模型参数的最小二乘估计.第1课时:一元线性回归模型.第2课时:一元线性回归模型参数的最小二乘估计.第3课时:一元线性回归模型的应用.1.2内容解析一元线性回归模型是描述两个随机变量之间相关关系的最简单的回归模型.当两个变量具有显著的线性相关关系时,可以建立一元线性回归模型来刻画两个变量间的随机关系,并通过模型进行预测.建立一元线性回归模型的基础是对成对样本数据进行相关性分析.通过散点图,直观观察相关关系的类型
2、、方向和强弱;构造相关系数,定量刻画两个变量相关的正负性和线性相关关系的密切程度.在此基础上,建立一元线性回归模型,使用最小二乘法估计参数,得到经验回归方程,进行预测.为了评价和改进模型,引入残差和残差图,以及决定系数R2对模型进行诊断,使其不断完善,帮助决策.一元线性回归模型是统计学中一种最基础且重要的模型,许多回归模型都是以一元线性回归模型为基础进行研究.其涉及的统计模型的思想、最小二乘思想、方差分析思想(构造统计量,评价回归拟合效果)在统计学中占有重要的地位.在一元线性回归模型的建立和应用过程中,通过创建回归方程、估计模型参数、分析模型有效性、将非线性回归模型转化为线性回归模型等内容的学
3、习,使学生亲力亲为、参与其中,体会统计的思想,理解统计的概念,了解统计分析的一般方法,积累数据分析的经验,增强应用意识.让学生感悟到根据实际情况进行科学决策的必要性和可能性,体会统计思维与确定性思维的差异、归纳推理与演绎证明的差异,夯实“四基”,提高“四能”,全面培养学生的数据分析、数学建模、逻辑推理、数学抽象、数学运算等数学核心素养.基于以上分析,确定本单元的教学重点:(1)一元线性回归模型的意义;(2)用最小二乘法估计回归模型参数的方法;(3)残差分析和决定系数R2的意义;(4)一元线性回归模型的应用.2单元目标与目标解析2.1目标(I)结合具体事例,了解一元线性回归模型的含义,了解模型参
4、数的统计意义,了解最小二乘原理.(2)掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件进行数据分析.(3)掌握残差分析的方法,理解决定系数R2的意义.(4)针对实际问题,会用一元线性回归模型进行预测.2.2目标解析达成上述R1标的标志是:(1)知道线性回归模型与函数模型的区别,知道线性回归模型中误差e的含义,知道假设误差e满足E(e)=O,D=J的理由.(2)能依据使用距离来刻画接近程度的数学方法了解最小二乘原理,并利用该原理推导参数估计值的计算公式.(3)会使用统计软件绘制散点图,计算样本相关系数、求回归方程,能用残差、残差图和决定系数R2对回归模型进行评价等.(4)通过具体
5、案例,理解利用一元线性回归模型可以刻画随机变量之间的线性相关关系,在建立一元线性回归模型解决实际问题的过程中,提升数据分析、数学建模、逻辑推理等素养.3单元教学问题诊断分析“一元线性回归模型及其应用”与“成对数据的统计相关性”一样,都是关于定量变量进行的研究.在前一节“成对数据的统计相关性”的学习中,主要介绍了散点图和相关系数,侧重于考查变量之间相关的形态和程度,而“一元线性回归模型及其应用”侧重于考查变量之间的数量关系,展示变量之间的具体形态.因此,可以看作是在前一节基础上的进一步深入刻画.为了揭示这种数量关系,在第一节里引入回归模型这一概念,教学时要注意与函数模型的区别,体会统计思维和确定
6、性思维的差异,这也是由于统计学的学科特点决定的.统计学是建立在数据的基础上,通过演绎方式,对随机现象进行研究的科学.许多样本数据带有随机性,因此,在构建模型时,特地设置了随机误差项e,反映未列入方程的其它各种因素对y的影响,并对其均值和方差做了要求.学生们在学习随机误差时可能会存在理解困难.在第二节里,介绍了利用最小二乘原理寻求最佳拟合直线的方法,让学生体会其蕴含的最小二乘思想,认识到最小二乘法是统计分析中一种常用的数据处理方法.利用该方法对模型的参数做出估计时,学生们容易误将参数的估计值当作模型的参数,对参数的意义理解不够准确,这是由于对样本的随机性了解不够造成的.教学设计时专门设置解惑环节
7、,消除障碍,深化理解.基于以上分析,确定本单元的教学难点:(1)对随机误差的理解;(2)最小二乘的原理和方法;参数的意义及参数估计公式的推导;(4)残差变量的解释与分析;(5)模型的应用以及优度的判断.4单元教学支持条件分析一元线性回归模型主要研究两个随机变量的线性相关关系,通过成对样本数据建立模型,寻找数据背后隐藏的规律.在教学时,由于需要处理大量数据,涉及画散点图、求回归方程、画回归直线、计算残差和决定系数R2以及数据变换等等,计算量大.课标(2017年版)里明确要求“会使用相关的统计软件”.因此,在本单元教学中,需要使用GeoGebra.Exce1图形计算器等统计软件帮助处理数据.利用信
8、息技术工具辅助教学,不仅仅是教学的需要,也是现如今大数据时代,对于每个受教育者掌握必备的信息技术提出的要求.借助大数据的东风,创建信息技术高效课堂.6课时教学设计2第二课时6.1 教学内容最小二乘原理,一元线性回归模型参数的最小二乘估计.6.2 教学目标(1)通过数学方法刻画散点与直线的接近程度,体会一元线性回归模型参数的最小二乘估计原理,能推导参数的估计值公式,发展数学运算能力.(2)通过对残差和残差图的分析,能用残差判断一元线性回归模型的有效性,发展数据分析的能力.(3)会使用相关的统计软件.6.3 教学重点与难点教学重点:一元线性回归模型参数的最小二乘估计.教学难点:参数估计值公式的推导
9、,利用残差分析回归模型.6.4 教学过程设计6.4.1复习旧知,导入新课数学学习是有连续性和联系性的.在上一节8.2.1一元线性回归模型中,为了研究两个变量之间的相关关系,我们以儿子身高与父亲身高之间的关系为例子,通过绘制散点图,结合相关系数,推断两个变量线性相关.接下来,用X表示父亲身高,用Y表示儿子身高,eYbx+a+ei2.如果说散点图是从E(e)=O,D(e)形的角度对变量之间的关系做了定性的研究,那么表达式Y=bx+a+e则从数的角度对变量y与变量X之间的线性相关关系,做r定量的刻画.其中“称为斜率参数称为截距参数,这两个参数未知.由于。和b作为回归模型的参数,无法像函数模型那样精确
10、地求出来,只能通过样本数据进行估计.如果能把这两个参数估计出来,那么就能利用模型进行有效地预测,做出科学的决策.因此,本节课的探究任务对一元线性回归模型中的参数。和方的值,进行估计.设计意图:承前启后,建立前后知识间的联系,保持连贯性,便于水到渠成,提出本节课的探究任务.开门见山,指出本节课的重要性,参数的估计值关系着模型预测结果的科学性与准确性,所以有必要寻找一种科学的方法,有效减少误差,为最小二乘法的引入做铺垫.6.4.2问题引导,深入探究问题1:如何估计参数。和b的值?图2师生活动:教师提出问题,学生独立思考,寻找答案.教师结合散点图(图2),适当引导,使学生意识到:由于参数。和b刻画的
11、是变量丫与变量X的线性关系.如果能够确定参数的值,就可以清楚的了解两个变量的相关性,就像把平均数作为一个变量数据集中趋势的代表一样.因此,通过成对样本数据估计这两个参数,从几何意义上说,相当于寻找一条适当的直线,使表示成对样本数据的所有散点在整体上与这条直线最接近.该直线可以作为两个变量具有线性相关关系的代表,且该直线对应的回归方程刻画了两个变量间的数量关系.设计意图:在统计学中,许多回归分析的相关概念都可以在直观的几何框架内予以解释,因此,本节课对于参数。和方的估计,也可以尝试利用几何直观化的方法来探究.目的在于借助于图形这一工具,搭建“脚手架”,让学生更加直观地认识和理解“寻找整体上最接近
12、的直线,其实就是寻找整体误差最小化的过程”,符合高中学生的思维特点.教师除了在方法上给予引导之外,还将探究任务与学生熟悉的典型案例相结合.通过典型案例,提出恰当的统计问题,以问题为驱动力,展开探究学习,避免了缺少案例支撑的抽象叙述带来的理解困难.另外,案例可以为数据分析方法的呈现提供归纳所需的基础一一数据.以数据为支撑,便于接下来将统计数据的代数处理转化为几何直观.【课堂讨论环节】利用散点图,找出一条直线,使各散点从整体上与此直线尽可能接近.师生活动:教师鼓励学生大胆探索,认真思考.同学们独立思考,自主探索,在导学案上动手画图,寻找最接近的直线,最后交流讨论、集思广益,派代表发言.对于具有线性
13、相关关系的两个变量,无法在散点图中作一条直线,使其经过所有的样本点,因此,对于最接近的直线(直观的描述),学生们可能会想到许多画法.学生代表甲:采用测量的方法,先画出一条直线,测量出各点到直线的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就得到一条直线.图3教师点评:该方法体现了整体偏差最小的思想,缺点是难以实现,且测量的方法很难得到确定的结果.学生代表乙:在图中选择这样的两点画直线,使直线两侧的点的个数基本相同,把这条直线作为所求直线.图4教师点评:该方法没有利用全部数据信息,结果会因人而异.学生代表丙:在散点图中多取几对点,确定出几条直线的方程,再分别求出这些
14、直线的斜率、截距的平均数,将这两个平均数作为所求直线的斜率和截距.一儿子身高/cm160165170175180185父亲身高/cm图5教师点评:该方法既没有利用全部数据信息,也没有体现整体误差最小的思想,结果也不确定.师生活动:教师总结学生发言,既肯定了可取之处,也指出不足.许多统计的思想和方法比较直观,同学们在探究思考的过程中,可能会出现一些漫无边际的想法,为了避免这种情况,应注意考虑到以下因素,如尽可能多使地用全部样本数据(避免以点概面),体现整体偏差最小的思想,方法操作性强,结果确定等.设计意图:问题的设计,明确问题,指明思考的方向一一实现从统计直观到数学表达的转化,即将“整体上与直线
15、最接近”这种描述性的表达,须转化为使用一个量化的指标来衡量接近程度,为接下来选择偏差平方和这个量化指标,介绍最小二乘法做好铺垫.同时,强化了学生使用数学工具探究问题、解决问题的意识.学生利用散点图,独立思考、自主探索,寻找最接近的直线的过程,能够调动学生的思维,体会统计思想方法的产生和形成过程,培养数据分析的素养.采用“合作探究+小组汇报”的方式,使学生参与到课堂讨论中去,强化学生的参与意识,还课堂给学生,实现学生是课堂的主人.另外,通过对不同方法间的优劣考量及其可行性分析,使学生学会辩证的分析和思考问题,便于接下来更好地理解最小二乘原理.【历史渊源】最小二乘法,又称最小平方法,主要是通过最小
16、化误差的平方和来寻找数据的最佳匹配函数.最小二乘法是回归分析的一种标准方法,也是统计学分类回归算法的基础,具有悠久的历史.最初由法国数学家马里勒让德(1egendre,1752-1833)于1806年提出.1809年,德国数学家高斯(Gauss,1777-1855)在天体运行论中分析如何充分利用测量数据来预测天体轨迹时,叙述了最小二乘思想.他在根据测量数据预测轨道时,发现一种有效利用全部测量数据的方法,即通过计算得出一组数据,在使数据组的偏差达到最小的意义下,这些数值是最优的.这种方法现在称作最小二乘法.高斯不仅提出了最小二乘法,而且考虑了最小二乘法的误差分析问题,形成最小二乘法理论的重要结果.这个结果从统计学的角度阐述了