《福船院环境监测课程讲义第2章 环境监测质量控制与保证.docx》由会员分享,可在线阅读,更多相关《福船院环境监测课程讲义第2章 环境监测质量控制与保证.docx(10页珍藏版)》请在第一文库网上搜索。
1、第二章环境监测质量控制与保证1 .监测质量的内容与常用术语1. 1、环境监测质量保证的作用与内容1 .环境监测保证是指为保证监测数据的准确、精密、有代表性、完整性及可比性而应采取的全部措施措施包括(指导自学部分):强调数据五大性的对监测结果的重要意义制定监测计划确定监测指标规定监测系统(4)人员技术培训实验室清洁度与安全。2 .环境监测质量控制是指为达到监测计划所规定的监测质量而对监测过程采用的控制方法。它是环境监测质量保证的一个部分。环境监测质量控制包括:实验室内部控制:空白试验、仪器设备的定期标定、平行样分析、加标回收率分析、密码样分析、质量控制图等。控制结果反映实验室监测分析的稳定性,一
2、旦发现异常情况,及时采取措施进行校正,是实验室自我控制监测分析质量的程序。实验室外部控制:分析监测系统的现场评价、分发标准样品进行实验室间的评价等。目的在于找出实验室内部不易发现的误差,特别是系统误差,及时予以校正,提高数据质量。1. 2、准确度1 .准确度的定义:准确度是测量值与真值的符合程度。一个分析方法或分析测量系统的准确度是反映该方法或该系统存在的系统误差的综合指标,决定着这个结果的可靠性。准确度用E或E相对表示。准确度的定义和评价方法要求明确掌握2 .评价准确度的方法可采用测定回收率、对标准物质的分析、不同方法的对比等方法来评价准确度。(1)回收率实验:在样品中加入标准物质,测定其回
3、收率。这是目前试验常用而又方便的确定准确度的方法。多次回收试验还可以发现方法的系统误差。回收率的计算:加标试样测定值-试样测定值加标量100%对标准物质的分析七检法一个方法的准确度还可用对照实验来检验,即通过对标准物质的分析或用标准方法来分析相对照。同样的分析方法有时也能因不同实验室、七检法的检验意义和步骤要求明确掌握不同分析人员而使分析结果有所差异。通过对照可以找出差异所在,以此判断方法的准确度。t检法也称为显著性检验显著性检验的一般步骤:a.提出一个否定假设。b.确定并计算七值:f=t05(f),则有显著性差异注:双侧检验和单侧检验。统计检验有两类。通常我们只关心总体均值U是否等于已知值X
4、,至于二者究竟那个大,对所研究的问题并不重要。这种情况的假设为U=X,否定假设为XWu。有些时候,也需要专门研窕X是否大于或小于U。这种情况的假设为(XW11)x2u,否定假设为x口(或XVU)。前者应用双侧检验,后者采用单侧检验。例1某标准物质A组分的浓度为4.47mg1o现以某种方法测定A组分,其5次测定值分别为4.28、4.40、4.42、4.37、4.35mg1to.05(0,故假设不成立,存在系统误差。例2.测定某标准物质中的铁含量,其10次测定平均值为1.054%,标准偏差为0.009%。已知铁的保证值为1.06%。检验测定结果与保证值有无显著性差异。例2例3由学生课堂练习解:假设
5、无显著性差异,x=c-_1.054%-1.06%a=0.05,f=9,查表t06=2.262.11,故假设成立,即测定结果与保证值无显著性差异。例2.用某方法9次回收率实验测定的平均值为89.7%,标准偏差为11.8%,例3.试问该回收率是否达到100机解:假设Pe1o(M查表to/。=1.86V2.62,故假设不成立,该方法去回收率达不到1001例4.用原子吸收分光光度法测定某水样中铅的含量,测定结果为0.306mg1,为检验准确度,在测定水样的同时,平行测定含量为0.250mg1的铅标准溶液10次所获数据为:0.254、0.256、0.254、0.252、0.247、0.251、0.248
6、、0.254、0.246、0.248。评价水样测定结果。解:假设】二,_0.251-0.2500.0查表to05O.79,故假设成立,测定值与预期值无显著性差异,水样的测定结果是准确的。例5某监测中心给一个实验室氟化物样品,经过大量分析数据(可以认为noc),此时X,含量为18.9ug,总体标准偏差b=0.9g。例4、5为作业巩固练习现有另一个氟化物样品,想知道是否就是上述样品。对其进行5次测定,得到平均值为20.0ug。问有无统计根据来说明它们不是同一种样品。解:设两样品是一致的,属于同一总体X-U20.018.9t=-=2.73t.05(4)=2.782.73,故假设成立,即两样品是同一个
7、样品。不同方法之间的比较一一t检法比较不同条件下(不同时间、不同地点、不同仪器、不同分析人员等)的两组测量数据之间是否存在差异。检验的假设是两总体均值相等,检验的前提是两总体偏差无显著差异,偏差来自同一总体,其偏差为偶然误差。步骤:a.使用精密度检验判断两方法标准偏差有无显著性差异,若无显著性差异,再进行t检验法比较两种t检法适用类型b.假设两均值无显著性差异;c.计算总体标准偏差:St(以-闾+(一砾nA+nB-2计算统计值:t=d.根据显著性水平及自由度查t临界值表;e.判断假设是否成立:tta,则无显著性差异,tta1.36,故假设成立,两种测定方法之结果无显著性差异。1 .3精密度1精
8、密度的基本概念精密度是指在规定的条件下,用同一方法对一均匀试样进行重复分析时,所得分析结果之间的一致性程度,由分析的偶然误差决定,偶然误差越小,则分析的精密度越高。精密度用标准偏差或相对标准偏差来表示,通常与被测物的含量水平有关。讨论精密度时常用以下术语:平行性:在同一实验室,当操作人员、分析设备和分析时间均相同时,明确掌握精密度的意义与检验方法用同样方法对同一样品进行多份平行样测定的结果之间的符合程度。重复性:在同一实验室,当操作人员、分析设备和分析时间三因素中至少有一项不相同时,用同样方法对同一样品多次独立测定的结果之间的符合程度。再现性:在不同实验室(人员、设备及时间都不相同),用同样方
9、法对同一样品进行多次重复测定的结果之间的符合程度。2 .精密度的检验F检验法应用:比较不同条件下(不同地点、不同时间、不同放行方法、不同分析人员等)测量的两组数据是否具有相同的精密度。S2F检验法同t检验法步骤,统计值计算:F=U也,查Fy表,并判断。Smin为-注:两组数据中偏差大的为S3,相对应的测定次数为期由例题:见书P2514、灵敏度与检出限(略)1.5、空白实验空白实验是指除用水代替样品外,其他所加试剂和操作步骤与样品测定完全相同的操作过程。空白实验应与样品测定同时进行。样品的分析相应值(吸光度、峰高等)通常不仅是样品中待测物质的分析响应值,还包括所有其他因素(如实际的杂质、环境及操
10、作过程中的沾污等)的分析响应值。由于这些因素的大小经常变化,在每次进行实验操作中作用样品分析的同时,均应作空白试验,其响应值为空白试验值。当空白试验值较高时,应全面检查试验用水、容器、仪器性能及操作环境等诸影响因素。1 .6、校准曲线1定义:校准曲线是用于描述待测物质的浓度或量与相应的测量仪器的响应量或其他指示量之间的定量关系曲线。校准曲线的线性范围:校准曲线的直线部分所对应的待测物质的浓度或量的变化范围称为该方法的线性范围。校准曲线根据测定方法的不同分为:工作曲线、标准曲线。2 .校准曲线的绘制配制一系列已知浓度的标准溶液,测定其响应值,选择适当的坐标纸,以响应值为纵坐标,浓度为横坐标,将数
11、据标出,将各点连成一条适当的曲线,通常选用校准曲线的直线部分。在曲线上,已知样品的y值,可找出对应的X值,其视差和读书误差可通过回归方程克服。17、回归分析1.7.1.回归分析的定义与用途环境监测中经常遇到相互间存在着一定关系的变量。变量之间关系主要有两种类型:1 .确定关系,如欧姆定律V=IR,己知三个变量中的任意两个,就能按公式求第三个。2 .相关关系:有些变量之间既有关系又无确定性关系,称为相关关系。如BOD与COD之间的关系;能斯特方程式E=E0-O.0591gC中E与IgC之间的关系;水中某种污染物的浓度与某种水生生物体内该物质的含量之间存在一定的关系等。回归分析就是研究变量间相互关
12、系的统计方法。同归分析有如下主要用途:1.建立回归方程:从一组数据出发,确定这些变量间的定量关系式,y=a+bx2.相关系数及其检验:评价变量间关系的密切程度。3 .应用回归方程从一个变量值去估计另一变量值,已知X或y,求y或X。4 .回归曲线的统计检验:对回归方程的主要参数作进一步的评价和比较。在环境监测质量控制与保证中主要应用的是一元线性方程。它可以用于建立某种方法的校准曲线,研究不同的方法之间的相互关系,评价不同实验室测定多种浓度水平样品的结果。掌握一元线性方程建立方法1.7.2. 一元线性回归方程的建立一组测定数据,包括:自变量X】X2X3Xn,因变量力y?y3y,如果X与y之间呈直线
13、趋势,则可用一条直线来描述两者之间的关系,即y=a+bx,其中y为由X推算出的y的估计值(回归值);b为回归系数,即回归直线斜率;a为回归直线在y轴上的截距。对于上式,若实测值yi与回归值y的偏差越小,则可认为直线同归方程与实测点拟合越好。用Q(a,b)表示实测值与回归值的差方和,则:Q(a,b)=(yi-yi)2=(yi-a-bxi)2要使Q(a,b)最小,用求极值的方法,分别对a,b求偏导并令其=。,即最小二乘法:*a(y噌-b)1oeQK(yi-a-bXj)2Ubab解方程组,可求出a、b的计算公式:,SXyZ(Xi-一1)D-=一SXXZ(Xi-X)2a=y-bx将a、b代入y=a+bx,即得一元线性回归方程。1.7.3. 相关系数及其检验对任何两个变量x、y组成的一组数据,都可根据最小二乘法回归出一条直线,但只有X与y存在某种线性关系时,直线才有意义。其线性关系的检验用相关系数。1相关系数的定义式:SXyZ(Xi-X)Oi-y)=-.JSXXSyy(xi-)2(yi-y)22 .相关系数的取值范围及物理意义取值范围:-11,物理意义:=0,X与y无线性关系;掌握相关系数的确定及其意义=+1,X与y完全正相关;=-bX与y完全负相关;01,X与y正相关;-K0,X与y负相关。3 .相关