《人工智能发展趋势研判与规范引导思路.docx》由会员分享,可在线阅读,更多相关《人工智能发展趋势研判与规范引导思路.docx(12页珍藏版)》请在第一文库网上搜索。
1、人工智能发展趋势研判与规范引导思路ChatGPT等人工智能语言模型的出现虽然尚未对人们的生产方式带来根本性变革,但有可能改变人们与计算机的互动方式,推动从用户创作到人工智能创作的转型,发展潜力与应用空间巨大。与此同时,ChatGPT带来技术层面、市场层面、规范层面、国际竞争层面的多重风险挑战。人工智能技术的发展和应用,将对人类经济社会发展带来深刻影响,我国人工智能技术发展也面临新的机遇和挑战。浙江大学光华法学院教授程乐在国家治理撰文指出:促进我国人工智能高效安全发展,应积极引导,促进价值观念再成型;积极研发新兴应用场景,占据市场优势地位;确保算法优势;统筹发展和安全;明确战略定位,提供宏观指导
2、;做好风险评估,确保企业合规。一、ChatGPT代表生成式人工智能技术及其商业应用的爆发,引发产业和行业大变革2023年11月30日,美国人工智能公司OPenA1推出基于深度学习的大语言模型ChatGPT,可实现交互式问答、创作、编程等复杂功能,备受市场关注。据报道,ChatGPT上线两个月,全球日活用户就已突破1亿,成为历史上用户增长最快的应用程序。2023年2月1日,OpenAI在其官网主页宣布,将试点ChatGPT付费订阅版ChatGPTPIus,每月收费20美元。由此可见,随着企业内部成本压力加大,技术可用度日趋成熟,人工智能产业正加速从前沿技术探索向商业化落地转型。ChatGPT的应
3、用前景包括对话式机器人、智能创作、编程机器人等;此外,其在教育、学术、客服等领域的应用也在逐渐落地。ChatGPT的基本模式是人工智能生成内容(AIGC),专注于生成语言文本,并一定程度上替代现有搜索引擎功能。与以往的对话式人工智能(如微软小冰)相比,ChatGPT核心能力包括:对问题的理解能力大幅提升,可以实现连续多轮对话;结果的准确性大幅提升,同时可以主动承认错误、发现无法回答的问题;具备识别非法与偏见的机制,针对不合理提问进行提示,并拒绝回答;理解用户需求并创造内容,甚至可以协助进行代码编写。虽然目前ChatGPT无法给人们的生产方式带来根本性变革,但有可能改变人们与计算机的互动方式,推
4、动从专家生成内容(PGC)、用户生成内容(UGC)到人工智能生成内容(AIGC)的转型。全球著名信息技术研究与顾问咨询公司高德纳(Gartner)将人工智能生成内容(后文统一用AIGO列为最有商业前景的人工智能技术,预计A1GC行业将在25年内将进入成熟期,发展潜力与应用空间巨大。ChatGPT的商业化服务探索、AIGC赛道的投资成为当前关注焦点。AIGC领域的总体态势表现为:国外头部机构引领技术和商业应用,国内整体进度落后2-3年,尤其是基础技术研发方面。此外,除科技巨头积极布局AIGC行业外,科技创业公司的机会成本也显著增加。目前,国外多家生成式人工智能创业公司获得大笔融资且拥有较高估值。
5、ChatGPT具备强大的交互和信息检索能力,对谷歌、百度等传统搜索引擎公司构成潜在替代风险,倒逼搜索引擎行业进行技术升级。用户可以直接在ChatGPT以提问形式获得期待答复,比起传统在搜索引擎人工浏览整合答案的效率大大提升。目前,各大搜索引擎企业正在加速将AIGC嵌入其网站中,例如微软将ChatGPT应用于其搜索引擎必应(Bing)中,百度于3月推出人工智能聊天机器人文心一言,并整合到其搜索引擎中。当前A1GC领域领先的国外公司主要包括OpenA1Stabi1ityAI、MidjourneyJaSPer等,其中OPenA1技术积累最强,发布了多款AIGC底层算法。国内公司如阿里、网易、百度、腾
6、讯、字节等均在部署推出AIGC的应用产品。基于此,当前一种观点认为ChatGPT是科技史上的里程碑事件、颠覆性成果,会刺激基于人工智能的商业模式爆发式发展,进而引发产业和行业大变革。另一种声音则认为ChatGPT只是近年来持续发展的人工智能技术的一次成功的商业化应用,距离真正的人工智能还有很长的路,甚至可能并非在正确的道路上。总体而言,ChatGPT的横空出世,利好国内外算力与存储(芯片、计算机等)相关基础设施发展以及数据、算法等A1GC商业化应用,但仍不能忽视其所带来的潜在道德和社会危险。二、ChatGPT带来的风险挑战OpenAI首席执行官A1tman曾在推特承认,真正的强人工智能(Art
7、ificia1Genera1Inte11igence,AGI)可能在未来十年内实现。所以,当前必须极其认真地对待其所带来的网络安全等一系列风险。01技术层面的风险从技术层面而言,人工智能语言模型GPT的出现和升级意味着语言人工智能和人工智能整体技术水平的显著进步。但若人工智能基础设施不及预期,大模型训练就无法完成或者达不到预期效果。当前AIGC技术仍有局限,模型仍需持续迭代优化,技术发展可能存在不及预期风险,具体包括算力支持不及预期、数据质量不及预期等。尤其是我国在A1GC领域仍处于发展初期,技术迭代速度较慢,基础技术研发领域创新性供给不足。ChatGPT目前仍存在很多局限性,需进行持续技术优
8、化。例如,ChatGPT可能生成不正确或荒谬的信息,抑或是正确但无用的废话,也可能会产生违反伦理道德的答案。由于其所基于的训练数据库仅截至2023年(而非基于实时数据),也会产生回答已经过时的现象。02市场层面的风险从市场层面而言,新一代人工智能语言模型的升级推动AIGC的发展,极大拓展了市场规模。根据高德纳(Gartner)预测,到2025年AIGC产生的数据将占所有数据的10%,2030年AIGC市场规模将超过万亿人民币。目前,因为多重原因,各国类似于ChatGPT的技术发展不完善、不平衡,应用不及预期。若ChatGPT等技术发展不及预期,AIGe渗透率未能如期提升、应用场景受限,理论上存
9、在的潜在市场规模就无法充分释放。对于我国而言,国内企业以及国内外企业对于同一市场的开发与分配之间的不均衡可能会导致蜂拥而上的相关企业最后陷入无效竞争或者恶性竞争的状态,以及投入与产出的极不对称。03规范层面的风险ChatGPT带来的规范层面的风险挑战,主要包括以下几个方面:第一,人工智能驱动网络犯罪风险。当前,ChatGPT使得网络犯罪分子更容易进行低级别的网络攻击。ChatGPT可以产生多种语言的钓鱼邮件,即使不懂英文或高级代码的犯罪分子也可以轻易达成犯罪目的。ChatGPT可以被要求创建恶意软件来检测敏感的用户数据,还可以入侵计算机系统或电子邮件账户以获取重要信息。国外科技媒体B1eepi
10、ngComputer的网络安全研究员AxSharma曾让ChatGPT写了一封令人信服的钓鱼邮件,并创建了JavaScript来窃取信用卡号码。然而,ChatGPT也许只是人工智能驱动网络犯罪的开始。芬兰一篇题为人工智能驱动的网络攻击的安全威胁的研究论文认为,未来五年,人工智能的迭代确实将改变网络安全攻击者和防御者的模式。第二,知识产权与隐私保护风险。由于ChatGPT是以训练数据模式为基础的,所以它不具备原创性思维和创造性反应的能力,因此ChatGPT生成的文本可能导致抄袭,此外版权归属与深伪技术也为知识产权保护带来困境。由于对抄袭的担忧,ChatGPT已经在美国纽约和西雅图的学校被禁止使用
11、。此外,ChatGPT引发了关于用于训练和改进的个人数据的隐私和安全问题,它保留了用户个人数据和敏感信息,一旦数据被滥用,会造成隐私泄露风险。简单地说,所有与ChatGPT的对话都可以被存储,并由人类培训师审查,以检查和改进人工智能模型。人工智能可能会生产违反常规、违背法律和道德的内容,或帮助人类以作弊等形式完成违反常规、违背法律和道德的行为。由于AIGC发展处于早期,政策监管仍不明确,利用ChatGPT生成的内容可能存在侵犯其他内容知识产权等规范层面的风险。与任何能够产生类似人类文本的技术一样,ChatGPT对网络安全和隐私也会产生消极影响,尤其是风险因素的存在可能会改变网民对于网络世界的认
12、知,进而改变甚至颠覆网络安全系统。网民应用ChatGPT主要可能触及的规范风险包括:错误信息风险:ChatGPT改变了传统的网络搜索方式与传播方式。虽然大型语言模型难免会产生错误信息,但只有当错误信息被广泛传播、阅读并相信才会产生伤害。ChatGPT在网络环境下具有大规模且廉价生成文本的能力,若被恶意滥用,势必会使得虚假信息在网络世界广泛传播。深伪技术风险:基于大数据自然语言处理模型,ChatGPT通过深伪技术产生的文本与人类书写的文本没有区别。这可以用于在线模仿个人。而深伪文本的广泛传播会导致人们对于网络世界信息传播与人际交流的不信任。数据泄漏风险:ChatGPT基于大型网络文本数据库进行了
13、预训练,因此它可能包含敏感信息或偏见。如果模型与包含敏感信息的数据(例如个人数据,财务数据或健康数据)一起使用,这可能会导致隐私漏洞。第三,政策监管漏洞。当前AIGC处于发展初期,相关政策规范处于滞后和监管不明的状态。首先在技术层面,监管机构面临算法不透明、技术障碍等问题,进一步增加了监管难度。其次,在法律规范层面,当前算法与人工智能领域相关法律规范仍处于缺位状态,监管机构面临采取行动缺乏对应法律依据的现实困境。04国际竞争局面的挑战第一,技术封锁挑战。目前ChatGPT没有对中国用户开放使用,无法用国内手机号进行注册,国内用户想要使用ChatGPT存在诸多限制。科技虽然无国界,但是科技公司有
14、国籍。而ChatGPT未对中国用户开放,实则也是这些年中美科技博弈的缩影,是美国实行对华技术封锁的体现。OpenAI公司目前掌握着AIGC底层算法和核心技术,也就占领了国际社会该领域的技术话语权。第二,国家安全风险。根据路透社2月13日的报告,由于ChatGPT对国家安全的影响,美国立法者已经着手相关立法工作。对于我国而言,一方面,由于OPenA1公司本身的政治立场,ChatGPT在回答政治问题,尤其是中美问题时,存在明显的亲美贬中的倾向;另一方面,恶意行为者、其他非国家行为者,对中国有敌意的国家行为者可能会利用这些系统,故意训练或生成错误的,甚至是诋毁我国的信息。三、从ChatGPT看人工智
15、能生成渊源和现实影响从“奇点”到“爆点”的推动要素。从数年前甚嚣尘上的人工智能“奇点论”至如今对话交互式人工智能应用成功与全社会层面进行交互,人工智能从“奇点”走向“爆点”的事实已露端倪。然而所谓“爆点”,爆于何点却需要更严谨的要素与趋势研判才能佐证。依目前来看,近期的人工智能爆点源自于接近性门槛降低带来的应用用户群体急速扩张与对行业既有价值规则的冲击,更深一层则源自于机器学习产生以来,以多重语料库为学习材料不断打磨锻炼而形成的语言交互及逻辑模型。人工智能与语言交互领域的突破源自于对于相应要素的长期积累与培育打磨。以上效果的最终呈现自互联网发明伊始便开始沉淀,并由硬件与算力的提升及互联网共享数
16、据内容的海量增殖而最终得以完善。束羁于预设的功能范畴。虽然以ChatGPT为代表的交互式人工智能应用已展现了令人瞠目的智能性与逻辑编排能力,但其展现却仍滞留于“高于一般,低于前沿”的发展阶段,且将长久处于该阶段。导致这一结果的原因有二:其一,机器学习的基础材料与模型机理皆是由人力完成,语言作为人力交互的最基本表达方式也是最简单的呈现,其表现方式在机器易学的同时也易为大众所接受,但无论其对基础材料的重新编排如何精妙,其高度远无法超过语料库本身所呈现的逻辑最高点,这也是由语言作为表达工具的逻辑功能所限。其二,位于前沿的科学研究与发现皆为人力突破极限所衍生的新高度与新事物,其中除科学技术与发现技巧之外,大部分创新成果需要对新事物发现进行符合人类知性与感性逻辑的选择。大部分技术选择并不一定最科学,却最符合人的感性与认知,而机器目前无法代替人类完成这一选择。哪怕机器能够代替人类选择,人类也会出于主观能动性,对于机器筛选结果进行再次审核监督,从而进行知性与感性的纠正。赋值社会效果有待突破。人工智能赋值社会的技术应用周期较长,从