半导体全制程介绍.docx

上传人:lao****ou 文档编号:485050 上传时间:2023-12-14 格式:DOCX 页数:31 大小:451.57KB
下载 相关 举报
半导体全制程介绍.docx_第1页
第1页 / 共31页
半导体全制程介绍.docx_第2页
第2页 / 共31页
半导体全制程介绍.docx_第3页
第3页 / 共31页
半导体全制程介绍.docx_第4页
第4页 / 共31页
半导体全制程介绍.docx_第5页
第5页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《半导体全制程介绍.docx》由会员分享,可在线阅读,更多相关《半导体全制程介绍.docx(31页珍藏版)》请在第一文库网上搜索。

1、半导体全制程介绍目录1 .序言12 .晶圆处理制程介绍153 .晶柱成长制程164 .晶柱切片后处理175 .晶圆针测制程介绍-1196 .半导体测试制程介绍-2207 .半导体测试生产管理特性248 .电子构装型态介绍269 .电子构装制造技术2810 .构装制程介绍30提至半导体”这个词时,人们联想到的通常是芯片、手机、电脑等等,其实半导体的应用不仅于此,在集成电路、消费电子、通信系统、光伏发电、照明应用、大功率电源转换等领域都有其活跃的身影。接下来就由上海富晨为您介绍半导体究竟是什么?它又是怎样被制造出来的?以及上海富晨企业集团产品在半导体及电子行业的应用。半导体是什么?生活中,所有的物

2、体根据其导电性可以分为三类:绝缘体:电导率约介于10的一18次方Scm10的一8次方S/cm导体:电导率介于10的-4次方S/cm-10的3次方S/cm半导体:电导率介于绝缘体和导体之间。常见的元素半导体有硅、错、硼、硅、碘及碳、磷、碑、硫、睇、锡等12种元素,由于自然界中沙石中就含有大量的硅元素,具有天然的价格优势,所以通常会使用硅砂提炼,制得多晶硅,并通过掺入杂质元素,进而改变其导电性能。通过这种方式,可以制作出具有不同电流电压特性的晶体管。将成万上亿只晶体管集成在一起便形成了我们常说的集成电路,之后经过设计、制造、封装、测试,使无数的集成电路集合成为一个可以立即使用的独立整体,这就是我们

3、常说的芯片。除集成电路之外,半导体也应用于分立器件、光电子器件、传感器等产品。那么半导体是怎么被制造出来的呢?自然界中硅砂很多,但硅砂中包含的杂质太多,缺陷也太多,不能直接拿来用,需要对它进行提炼。SiC+SiO2Si(固体)+SiO2(气体)+CO(气体)Si(固体)+3HC1SiHCh(气体)+电(气体)SiHe13(气体)+H式气体)Si(固体)+3HC1(气体)通过这种方式生产的是多晶硅,虽然硅原子纯度够了,但排列混乱,会影响电子运动。于是人们发明了一种长单晶的办法,叫柴可拉斯基法,也有一种直观的称呼叫提拉法/直拉法。这种方法会先将高纯硅熔化成液体,再一边旋转一边往上拔,提拉法长出来的

4、晶锭就是圆柱体了,如此凝固成的单晶固体形式,称为“锭”,这就是半导体制造的第一步。装置可参考下图:前一个步骤完成后,需要用金刚石锯切掉铸锭的两端,再将其切割成一定厚度的薄片。锭薄片直径决定了晶圆的尺寸,更大更薄的晶圆能被分割成更多的可用单元,有助于降低生产成本。切割硅锭后需在薄片上加入“平坦区”或“凹痕”标记,方便在后续步骤中以其为标准设置加工方向。晶圆表面抛光通过上述切割过程获得的薄片被称为“裸片”,即未经加工的“原料晶圆裸片的表面凹凸不平,无法直接在上面印制电路图形。因此,需要先通过研磨和化学刻蚀工艺去除表面瑕疵,然后通过抛光形成光洁的表面,再通过清洗去除残留污染物,即可获得表面整洁的成品

5、晶圆。第二步氧化氧化过程的作用是在晶圆表面形成保护膜。它可以保护晶圆不受化学杂质影响、避免漏电流进入电路、预防离子植入过程中的扩散以及防止晶圆在刻蚀时滑脱。氧化过程的第一步是去除杂质和污染物,需要通过四步去除有机物、金属等杂质及蒸发残留的水分。清洁完成后就可以将晶圆置于800至1200摄氏度的高温环境下,通过氧气或蒸气在晶圆表面的流动形成二氧化硅(即“氧化物”)层。氧气扩散通过氧化层与硅反应形成不同厚度的氧化层,可以在氧化完成后测量它的厚度。干法氧化和湿法氧化根据氧化反应中氧化剂的不同,热氧化过程可分为干法氧化和湿法氧化,前者使用纯氧产生二氧化硅层,速度慢但氧化层薄而致密,后者需同时使用氧气和

6、高溶解度的水蒸气,其特点是生长速度快但保护层相对较厚且密度较低。干法氧化湿法氧化使用氧气使用水蒸气速度慢但氧化层懑速度快但氧化层厚除氧化剂以外,还有其他变量会影响到二氧化硅层的厚度。首先,晶圆结构及其表面缺陷和内部掺杂浓度都会影响氧化层的生成速率。此外,氧化设备产生的压力和温度越高,氧化层的生成就越快。在氧化过程,还需要根据单元中晶圆的位置而使用假片,以保护晶圆并减小氧化度的差异。第三步光刻光刻是通过光线将电路图案“E|J刷”到晶圆上,我们可以将其理解为在晶圆表面绘制半导体制造所需的平面图。电路图案的精细度越高,成品芯片的集成度就越高,必须通过先进的光刻技术才能实现。具体来说,光刻可分为涂覆光

7、刻胶、曝光和显影三个步骤。涂覆光刻胶在晶圆上绘制电路的第一步是在氧化层上涂覆光刻胶。光刻胶通过改变化学性质的方式让晶圆成为“相纸。晶圆表面的光刻胶层越薄,涂覆越均匀,可以印刷的图形就越精细。这个步骤可以采用“旋涂”方法。根据光(紫外线)反应性的区别,光刻胶可分为两种:正胶和负胶,前者在受光后会分解并消失,从而留下未受光区域的图形,而后者在受光后会聚合并让受光部分的图形显现出来。曝光在晶圆上覆盖光刻胶薄膜后,就可以通过控制光线照射来完成电路印刷,这个过程被称为“曝光”。我们可以通过曝光设备来选择性地通过光线,当光线穿过包含电路图案的掩膜时,就能将电路印制到下方涂有光刻胶薄膜的晶圆上。在曝光过程中

8、,印刷图案越精细,最终的芯片就能够容纳更多元件,这有助于提高生产效率并降低单个元件的成本。在这个领域,目前备受瞩目的新技术是EUV光刻。显影曝光之后的步骤是在晶圆上喷涂显影剂,目的是去除图形未覆盖区域的光刻胶,从而让印刷好的电路图案显现出来。显影完成后需要通过各种测量设备和光学显微镜进行检查,确保电路图绘制的质量。第四步刻蚀在晶圆上完成电路图的光刻后,就要用刻蚀工艺来去除任何多余的氧化膜且只留下半导体电路图。要做到这一点需要利用液体、气体或等离子体来去除选定的多余部分。刻蚀的方法主要分为两种,取决于所使用的物质:使用特定的化学溶液进行化学反应来去除氧化膜的湿法刻蚀,以及使用气体或等离子体的干法

9、刻蚀。湿法刻蚀使用化学溶液去除氧化膜的湿法刻蚀具有成本低、刻蚀速度快和生产率高的优势。然而,湿法刻蚀具有各向同性的特点,即其速度在任何方向上都是相同的。这会导致掩膜(或敏感膜)与刻蚀后的氧化膜不能完全对齐,因此很难处理非常精细的电路图。上海富晨企业集团氟材料衬里电子级化学品业应用场景干法刻蚀干法刻蚀可分为三种不同类型。第一种为化学刻蚀,其使用的是刻蚀气体(主要是氟化氢)。和湿法刻蚀一样,这种方法也是各向同性的,这意味着它也不适合用于精细的刻蚀。第二种方法是物理溅射,即用等离子体中的离子来撞击并去除多余的氧化层。作为一种各向异性的刻蚀方法,溅射刻蚀在水平和垂直方向的刻蚀速度是不同的,因此它的精细

10、度也要超过化学刻蚀。但这种方法的缺点是刻蚀速度较慢,因为它完全依赖于离子碰撞引起的物理反应。最后的第三种方法就是反应离子刻蚀(RIE)。RIE结合了前两种方法,即在利用等离子体进行电离物理刻蚀的同时,借助等离子体活化后产生的自由基进行化学刻蚀。除了刻蚀速度超过前两种方法以外,RIE可以利用离子各向异性的特性,实现高精细度图案的刻蚀。如今干法刻蚀己经被广泛使用,以提高精细半导体电路的良率。保持全晶圆刻蚀的均匀性并提高刻蚀速度至关重要,当今最先进的干法刻蚀设备正在以更高的性能,支持最为先进的逻辑和存储芯片的生产。第五步薄膜沉积为了创建芯片内部的微型器件,我们需要不断地沉积一层层的薄膜并通过刻蚀去除

11、掉其中多余的部分,另外还要添加一些材料将不同的器件分离开来。每个晶体管或存储单元就是通过上述过程一步步构建起来的。我们这里所说的“薄膜”是指厚度小于1微米(m,百万分之一米)、无法通过普通机械加工方法制造出来的“膜”。将包含所需分子或原子单元的薄膜放到晶圆上的过程就是“沉积”。要形成多层的半导体结构,我们需要先制造器件叠层,即在晶圆表面交替堆叠多层薄金属(导电)膜和介电(绝缘)膜,之后再通过重复刻蚀工艺去除多余部分并形成三维结构。可用于沉积过程的技术包括化学气相沉积(CVD),原子层沉积(A1D)和物理气相沉积(PVD),采用这些技术的方法又可以分为干法和湿法沉积两种。O1化学气相沉积在化学气

12、相沉积中,前驱气体会在反应腔发生化学反应并生成附着在晶圆表面的薄膜以及被抽出腔室的副产物。等离子体增强化学气相沉积则需要借助等离子体产生反应气体。这种方法降低了反应温度,因此非常适合对温度敏感的结构。使用等离子体还可以减少沉积次数,往往可以带来更高质量的薄膜。02.原子层沉积原子层沉积通过每次只沉积几个原子层从而形成薄膜。该方法的关键在于循环按一定顺序进行的独立步骤并保持良好的控制。在晶圆表面涂覆前驱体是第一步,之后引入不同的气体与前驱体反应即可在晶圆表面形成所需的物质。03.物理气相沉积顾名思义,物理气相沉积是指通过物理手段形成薄膜。溅射就是一种物理气相沉积方法,其原理是通过氢等离子体的轰击

13、让靶材的原子溅射出来并沉积在晶圆表面形成薄膜。在某些情况下,可以通过紫外线热处理(UVTP)等技术对沉积膜进行处理并改善其性能。半导体的导电性处于导体与非导体(即绝缘体)之间,这种特性使我们能完全掌控电流。通过基于晶圆的光刻、刻蚀和沉积工艺可以构建出晶体管等元件,但还需要将它们连接起来才能实现电力与信号的发送与接收。金属因其具有导电性而被用于电路互连。用于半导体的金属需要满足以下条件:低电阻率:由于金属电路需要传递电流,因此其中的金属应具有较低的电阻。热化学稳定性:金属互连过程中金属材料的属性必须保持不变。高可靠性:随着集成电路技术的发展,即便是少量金属互连材料也必须具备足够的耐用性。制造成本

14、:即使已经满足前面三个条件,材料成本过高的话也无法满足批量生产的需要。互连工艺主要使用铝和铜这两种物质。O1铝互连工艺铝互连工艺始于铝沉积、光刻胶应用以及曝光与显影,随后通过刻蚀有选择地去除任何多余的铝和光刻胶,然后才能进入氧化过程。前述步骤完成后再不断重复光刻、刻蚀和沉积过程直至完成互连。除了具有出色的导电性,铝还具有容易光刻、刻蚀和沉积的特点。此外,它的成本较低,与氧化膜粘附的效果也比较好。其缺点是容易腐蚀且熔点较低。另外,为防止铝与硅反应导致连接问题,还需要添加金属沉积物将铝与晶圆隔开,这种沉积物被称为“阻挡金属”。铝电路是通过沉积形成的。晶圆进入真空腔后,铝颗粒形成的薄膜会附着在晶圆上

15、。这一过程被称为“气相沉积(VD)”,包括化学气相沉积和物理气相沉积。02.铜互连工艺随着半导体工艺精密度的提升以及器件尺寸的缩小,铝电路的连接速度和电气特性逐渐无法满足要求,为此我们需要寻找满足尺寸和成本两方面要求的新导体。铜之所以能取代铝的第一个原因就是其电阻更低,因此能实现更快的器件连接速度。其次铜的可靠性更高,因为它比铝更能抵抗电迁移,也就是电流流过金属时发生的金属离子运动。但是,铜不容易形成化合物,因此很难将其气化并从晶圆表面去除。针对这个问题,我们不再去刻蚀铜,而是沉积和刻蚀介电材料,这样就可以在需要的地方形成由沟道和通路孔组成的金属线路图形,之后再将铜填入前述“图形”即可实现互连,而最后的填入过程被称为“镶嵌工艺”。铜互连相关挑战I1F1i1铜溢出和余铜去除随着铜原子不断扩散至电介质,后者的绝缘性会降低并产生阻挡铜原子继续扩散的阻挡层。之后阻挡层上会形成很薄的铜种子层。到这一步之后就可以进行电镀,也就是用铜填充高深宽比的图形。填充后多余的铜可以用金属化学机械抛光(CMP)方法去除,完成后即可沉积氧化膜,多余的膜则用光刻和刻蚀工艺去除即可。前述整个过程需要不断重复直至完成铜互连为止。通过上述对比可以看出,铜互连和铝互连的区别在于,多余的铜是通过金属CMP而非刻蚀去除的。第七步测试测试的主要目标

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 工作总结

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服