《Interface Engineering of Monolayer MoS2/GaN Hybrid Heterostructure:Modified Band Alignment for Photocatalytic Water Splitting Ap.docx》由会员分享,可在线阅读,更多相关《Interface Engineering of Monolayer MoS2/GaN Hybrid Heterostructure:Modified Band Alignment for Photocatalytic Water Splitting Ap.docx(10页珍藏版)》请在第一文库网上搜索。
1、InterfaceEngineeringofMonolayerM0S2/GaNHybridHeterostructure:ModifiedBandAlignmentforPhotocatalyticWaterSplittingApplicationbyNitridationTreatmentZhaofuZhang,+flQingkaiQian,”BaikuiLi/andKevinJ.Chen*,+DepartmentofElectronicandComputerEngineering,TheHongKongUniversityofScienceandTechnology,ClearWaterB
2、ay,Kowloon,HongKongtCollegeofOptoelectronicandComputerEngineering,ShenzhenUniversity,Shenzhen51806(),China*SupportingInformationABSTRACT:Interfaceengineeringisakeystrategytodealwiththetwo-dimensional(2D)/three-dimensional(3D)hybridhctcrostructurc,sincethepropertiesofthisatomiclaycr-thick2Dmaterialca
3、neasilybeimpactedbythesubstrateenvironment.Inthiswork,thestructural,electronic,andopticalpropertiesofthe2D/3DheterostructureofmonolayerM0S2onwurtziteGaNsurfacewithoutandwithnitridationinterfaciallayeraresystematicallyinvestigatedbyfirstprinciplescalculationandexperimentalanalysis.Thenitridationinter
4、faciallayercanbeintroducedintothe2D/3DhctcrostructurcbyremoteN2plasmatreatmenttoGaNsamplesurfacepriortostackingmonolayerM0S2ontop.Thecalculationresultsrevealthatthe2D/3Dintegratedheterostructureisenergeticallyfavorablewithanegativeformationenergy.Bothinterfacesdemonstrateindirectbandgap,whichisabene
5、fitfbrlongerlifetimeofthephotocxcitcdcarriers.Meanwhile,theconductionbandedgeandvalencebandedgeoftheMoSisideincreasesafternitridationtreatment.ThemodificationtobandalignmentisthenverifiedbyX-rayphotoelectronspectroscopymeasurementonMoS/GaNhctcrostructurcsconstructedbyamodifiedwet-transfertechnique,w
6、hichindicatesthattheMoSz/GaNheterostructurewithoutnitridationshowsatype-TIalignmentwithaconductionbandoffset(CBO)ofonly0.07eV.However,bythedeploymentofinterfacenitridation,thebandedgesofM0S2moveupwardfbr00.5eVasaresultofthenitridizedsubstrateproperty.ThesignificantlyincreasedCBOcouldleadtobetterelec
7、tronaccumulationcapabilityattheGaNside.Thenitridized2D/3Dheterostructurewitheffectiveinterfacetreatmentexhibitsacleanbandgapandsubstantialopticalabsorptionabilityandcouldbepotentiallyusedaspracticalphotocatalystfbrhydrogengenerationbywatersplittingusingsolarenergy.KEYWORDS:nitridationeffects,GaNsurf
8、ace,monolayerM0S2,heterostructurephotocatalyst,bandalignmentholescanbeeffectivelyseparatedinatype-IIalignmenthctcrostructurcwithreasonablebandoffsetvalues,leadingtoseparatedhydrogenandoxygengenerationattheoppositesideoftheheterostructure.Suchanapproachcaneffectivelyimprovethewatersplittingefficiency
9、.energy generation, since H2 could be produced directly fromwater by exposing to sunlight.1 2 * For high-efficiencyWurtziteGaNisawidebandgapsemiconductorofconsiderableinterestfbrradiofrequency(RF)poweramplifiersandpowerswitchingapplicationsphotocatalysts in solar energy conversion application,severa
10、l critical requirements should be satisfied, such assuitable band gap value and reasonable positions of theconduction band minimum (CBM) and valence bandmaximum (VBM) with respect to the water redoxpotentials?-4 * To reasonably design material fbr feasibleapplications, one of the practicable strateg
11、ies is to constructheterostructure photocatalysts that possess electronic andoptical properties beyond those offered by the individualconstituent parts/ since the band gap width and band gappositions could be effectively modulated once thehctcrostructurc is formed. Meanwhile, the photocxcitcdelectro
12、ns andaswellasoptoelectronicdevices/Inthepastdecades,therehavebeenseveralattemptstodeployGaNfbrphotocatalyticwatersplittingapplicationsconsideringGaNsexcellentchemicalandthermalstabilitiesaswellashighthermalconductivity.10Besides,thetunablebandgapofgroupIII-nitridccompoundsemiconductorsspansnearlyth
13、eentiresolarspectrumandhasabandedgepotentialthatstraddlesbetweenredoxpotentialofReceived:January23,2018Accepted:April30,2018Published:April30,2018ACSPublications2018AmericanChemicalSocietyACS ADolied Materials & InterfacesResearch Article?,9SSJ。1/52SousuacEnergy(eV)17420 DOI: 10.1021/acsami.9b01286A
14、CS AppL Mater. Interfaces 2018r 10,17419-17426Figure1.(a,d)Atomicstructures,(b,c)bandstructures,and(c,f)densityofstatesofmonolayerM0S2(top)andwurtziteGaNsurface(bottom).Yellow,purple,green,andgrayballsrepresentS,Mo.Ga,andNatoms,respectively.ThesurfacestatesinGaNsurfacearchighlightedinredcurves.water
15、.111Nevertheless,therelativelargebandgapwidthconstraintsthefiuitfiilimplementationinthevisiblelightenvironment.Tobetterutilizethevisiblelightwavelengthrange,severalgroupsreportedconstnictingGaNheterostructureswithlow-dimensionalmaterials,suchasM0S2andWSe2,1416motivatedbythesmalllatticemismatchandexcellentabsorptioncapabilityofthetwo-dimensional(2D)materials.17However,thereportedGaN/2Dheterostructuresallemploythegraphene-likeCiaNinthe2Dphase,whichisnotpracticalfbrnear-termapplicationdespitealreadyexperimentallysynthesized.IsInGaNdevicecommu