暖通风管风道设计手册.doc

上传人:w** 文档编号:99039 上传时间:2023-03-06 格式:DOC 页数:26 大小:1.51MB
下载 相关 举报
暖通风管风道设计手册.doc_第1页
第1页 / 共26页
暖通风管风道设计手册.doc_第2页
第2页 / 共26页
暖通风管风道设计手册.doc_第3页
第3页 / 共26页
暖通风管风道设计手册.doc_第4页
第4页 / 共26页
暖通风管风道设计手册.doc_第5页
第5页 / 共26页
暖通风管风道设计手册.doc_第6页
第6页 / 共26页
暖通风管风道设计手册.doc_第7页
第7页 / 共26页
暖通风管风道设计手册.doc_第8页
第8页 / 共26页
暖通风管风道设计手册.doc_第9页
第9页 / 共26页
暖通风管风道设计手册.doc_第10页
第10页 / 共26页
暖通风管风道设计手册.doc_第11页
第11页 / 共26页
暖通风管风道设计手册.doc_第12页
第12页 / 共26页
暖通风管风道设计手册.doc_第13页
第13页 / 共26页
暖通风管风道设计手册.doc_第14页
第14页 / 共26页
暖通风管风道设计手册.doc_第15页
第15页 / 共26页
暖通风管风道设计手册.doc_第16页
第16页 / 共26页
暖通风管风道设计手册.doc_第17页
第17页 / 共26页
暖通风管风道设计手册.doc_第18页
第18页 / 共26页
暖通风管风道设计手册.doc_第19页
第19页 / 共26页
暖通风管风道设计手册.doc_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《暖通风管风道设计手册.doc》由会员分享,可在线阅读,更多相关《暖通风管风道设计手册.doc(26页珍藏版)》请在第一文库网上搜索。

1、暖通风管风道设计手册单风管和双风管集中式空调系统:集中式空调系统:指对办公建筑物内部的空气进行集中处理,输送和分配的空调系统。系统组成:(1)空调房间;(2)空气处理设备;(3)送/回风管道;(4)冷热源。按送风管的套数不同分类:单风管系统和双风管系统。单风管系统(一次回风):只设置一根风管,处理后的空气通过风管送入末端装置。典型系统图示:一次回风与二次回风的区别:在喷水室或空气冷却器前同新风进行混合的空调房间回风,叫第一次回风。具有第一次回风的空调系统简称为一次回风式系统。与经过喷水室或空气冷却器处理之后的空气进行混合的空调房间回风,叫第二次回风,具有第一次和第二次回风的空调系统称为一、二次

2、回风系统,简称二次回风式系统。回风方式选择依据表:双风管系统:有两条送风管,分别送冷风和热风,新风与回风混合,经第一级空调器处理后,一部分经一根风管送到末端装置,另一部分再经第二级空调器处理后才送到末端装置;两种不同状态的空气在末端装置中混合,才送到空调房间。双风道空调系统的特点及应用:双风道系统适用于每个房间都需要分别控制室温,而每个房间冷、热负荷变化情况又不同的多层、多房间建筑。单风管空调系统的特点及应用:单风道集中式系统适用于空调房间较大,各房间负荷变化情况相类似的场合,如办公大楼、剧场、大会堂等。虽然双风管空调系统具有很好的调节性和节能性,但是其设备复杂占用空间大,限制了该系统的发展,

3、所以集中式空调系统中一般多使用单风管空调系统。风管管件损失计算:风管风速标准分为低速与高速两种,风速在15m/s以下属低速风管,以上则为高速风管。前者用于大楼通风及空调,后者则应用于工业及生产作业方面。风速之大小与风管噪音、震动、及成本均有相当大的关系。而风管出口及吸气口风速亦会影人体之舒适与安宁。低速风管风速标准:高速风管内风速标准:风机出风口及吸风口风速标准:风管材料:制造风管材料通常多为黑铁锌或镀锌铁板。后者耐锈蚀,使用较为普遍。设计上亦有采用铝板者,但价格较高,故仍少见。工场类建筑中,其排风及回风亦有采用混凝土结构者,但大多建于地下。有关圆形风管使用铁板厚度及型号如下列所视:圆形低速风

4、管使用铁板标准:矩形低速风管使用铁板标准:矩形高速风管使用铁板标准:矩形低速风管使用铝板标准:风管接合用法兰:圆形风管吊架标准:矩形风管支(吊)架标准:管路中损失:在管路中,要使空气流体经过管路,必须克服相当的阻力,这阻力以压力表示,可分为管路直线部份之损失及局部弯管、分岐管、网关等之压力损失,其主要原因包括来自:(1)摩擦;(2)弯曲;(3)分岐或汇合;(4)断面积或形状之变化。在管道中亦有许多存在之障碍物,均会造成管流之阻力,这些项目包括:(1)风量控制器;(2)阻水板;(3)空气过滤器;(4)加热器或冷却器;(5)测量及控制仪器;(6)防火活门。静压与动压损失:送风设备所产生阻力可分为动

5、与静两种。与风速平方成比例变化的是动阻力,与风速无关的静阻力。动阻力与静阻力合成即为为送风系统全阻力。若管路中有存在静压存在,则全压亦须包括达到静压所需压力。气流在风管内所损失压力可用下式表示:PT= PL+PD。式中,PT为全部压损,PL为管长压损,而PD则为各种弯管、分岐管、闸门等压损。前文已述,动压与风速间有一个确定的关系。就空气而言,其关系如下式:Pv= V2/2g = V2/16.3 = ( V/4.03 ) 2 mmAq式中,V的单位为 m/s。直线风管阻力损失:矩形风管换算:若想换算成同样单位阻力之矩形风管时,可利用下式换算:a、b分别为矩形风管之宽与高。其值亦可利用圆形面积与矩

6、形面积相等方式进行粗略估计。矩形风管外围宽与高比又称为纵横比(Aspect Ratio),此值最高可为8:1。但自1:1至8:1时,铁板面积要增加70%,其重量亦会增加3.5倍。故设计风管时,除非特殊情况,此比值应愈趋近1:1时为佳,以节省其制造与安装成本。风管局部管道阻力:一个完整的风管系统中,除风管本身外,尚有直管,弯管、分岐管闸门(damper)大小头,三通管,等其它组件。此部份因形状之改变会使风道产生涡流,并消耗部份能量。在这部份所产生摩擦及压力损失,统称为局部管道阻力,其计算方式如下:风管局部管道阻力:等效长度与直径之比:风管材料:制造风管材料通常多为黑铁锌或镀锌铁板。后者耐锈蚀,使

7、用较为普遍。设计上亦有采用铝板者,但价格较高,故仍少见。工场类建筑中,其排风及回风亦有采用混凝土结构者,但大多建于地下。有关圆形风管使用铁板厚度及型号如下列所视:圆形低速风管使用铁板标准:矩形低速风管使用铁板标准:矩形高速风管使用铁板标准:矩形低速风管使用铝板标准:风管接合用法兰:圆形风管吊架标准:矩形风管支(吊)架标准:管路中损失:在管路中,要使空气流体经过管路,必须克服相当的阻力,这阻力以压力表示,可分为管路直线部份之损失及局部弯管、分岐管、网关等之压力损失,其主要原因包括来自:(1)摩擦;(2)弯曲;(3)分岐或汇合;(4)断面积或形状之变化。在管道中亦有许多存在之障碍物,均会造成管流之

8、阻力,这些项目包括:(1)风量控制器;(2)阻水板;(3)空气过滤器;(4)加热器或冷却器;(5)测量及控制仪器;(6)防火活门。静压与动压损失:送风设备所产生阻力可分为动与静两种。与风速平方成比例变化的是动阻力,与风速无关的静阻力。动阻力与静阻力合成即为为送风系统全阻力。若管路中有存在静压存在,则全压亦须包括达到静压所需压力。气流在风管内所损失压力可用下式表示:PT= PL+PD。式中,PT为全部压损,PL为管长压损,而PD则为各种弯管、分岐管、闸门等压损。前文已述,动压与风速间有一个确定的关系。就空气而言,其关系如下式:Pv= V2/2g = V2/16.3 = ( V/4.03 ) 2

9、mmAq式中,V的单位为 m/s。直线风管阻力损失:矩形风管换算:若想换算成同样单位阻力之矩形风管时,可利用下式换算:a、b分别为矩形风管之宽与高。其值亦可利用圆形面积与矩形面积相等方式进行粗略估计。矩形风管外围宽与高比又称为纵横比(Aspect Ratio),此值最高可为8:1。但自1:1至8:1时,铁板面积要增加70%,其重量亦会增加3.5倍。故设计风管时,除非特殊情况,此比值应愈趋近1:1时为佳,以节省其制造与安装成本。风管局部管道阻力:一个完整的风管系统中,除风管本身外,尚有直管,弯管、分岐管闸门(damper)大小头,三通管,等其它组件。此部份因形状之改变会使风道产生涡流,并消耗部份

10、能量。在这部份所产生摩擦及压力损失,统称为局部管道阻力,其计算方式如下:风管局部管道阻力:等效长度与直径之比:若局部管道为矩形风管,则L/d可改以L/a代替,其中a为矩形风管之长边。风管局部阻力系矩形弯管(90度):矩形角管(90度):矩形弯管(整流片):矩形弯管附小型整流片:圆型弯管:圆形管接制弯管:急扩大管:急缩小管:渐大管:渐小管:变形:14=0.15圆形管三通管:圆形管三通管(支管钳形缩小):分流(支斜管) 45度角:矩形风管分岐管:矩形风管合流:金属网:管内气孔:管出口(渐扩大形):多孔型出风口:风管设计实例:风管之设计方法有:减速法、定阻法、静压重获法等三种,减速法设计时较难获得准

11、确的答案,故较少人采用。目前介绍定阻法。工厂风管布置图为例。经过风机之后,总风量为18000m3/h,经过A点后分出两条管路,主管维持10,800m3/h,支管则为7,200 m3/h。共有B、C、D、E、F等五个点出口,每个出口之风量为3,600 m3/h。(1)决定风速:由表中先选定风量标准。就工厂环境而言,其标准风速为6-9m/s。兹以最大值9m/s作为此次设计之风管风速。(2)主管部份损失:在18,000m3/h之风量下,若以风速9m/s为基准,主管之损失率每米为0.092mmAq,设本例以0.1 mmAq/m为损失标准。(3)求ZA间之直径:Q=18,000m3/h,R=0.1 mm

12、Aq/m时,覆由图6.1得其直径为83cm,修正后其风速变为9.3 m/s,应属合理之范围内。(4)直径83cm为圆管,但风管仍以矩形管为多,若换算为矩形管,则可由表中查出接近于76x76之尺寸。若以此为主风管之口径,则风速将变为8.7 m/s,更适合标准范围。(5)重复第(3)及第(4)项,可以求出AB、BE、CD、AE、EF等区段之直径、矩形尺寸及其相对应之风速(如表6.14)。在ZD间,A处之分岐管及CD间之90度弯管,均会产生损失。A处之详细结构如图。风管系统设计数据:分岐管设计:空气由A处流向BC方向时,其阻力可以不计。CD间之弯管则由第1例可以先查出H/W=1.0,r/W=1.5(

13、假设值)时,其L/W=4.5。故等效长度应为:L= 4.50.40 = 1.8 m故ZD间之风管总长度应为:( 5 + 10 + 10 + 10) +1.8= 36.8 m己知 R =0.1 mmAq/m,故其阻力应为:0.10/m 36.8 m = 3.7 mmAq (AD部份)(7)AEF部份:AEF部份由A处之分岐管、AE间之90度弯管及直管长度。由第15例可以求得:= (a/b)0.25(V3/V1)=(6.9/31)0.25(8.7/8.7) =1.26 =0.65PT =0.65(8.7/4.05)2 =3.0 mmAq故AEF间之直管及曲管合并,其压损失为:(10 + 5 + 1

14、0 + 4.5 x 0.54) x 0.10 = 2.75mmAqAEF之总阻力为 3.0 + 2.75 = 5.75 mmAq(8)由(6)与(7)之结果得知:AF之阻力损失大于AD,所以采用AF之阻力值计算。AF再加上ZA间之阻力损失2.0mm,即等于全部风管阻力为7.75 mmAq (约7.8mm)。(9)风管外尚需加入空气过滤器10mmAq及出风口之压损5 mmAq,故全部送风系统之损失为:PT = 7.8 + 10 + 5 = 22.8 mmAq(10)但风机之选择大多按静压计算。送风机之排出口风速为11m/s,则所需之静压为:PS = PT ( V/4.03)2 = 22.8 (11/4.03)2 =15.4 mmAq(11)为求得整套风管系统之压力平衡,使风量能得以平均分配各地,部份分岐管内应安装风量调节器,以期取得此项平衡效果。(12)以上值并未包括缩小管部份之损失。可以自行将这部份考虑在内,以求得更为周全。风道设计:风道材质的选择:风道材质的选用没有严格的要求,但要保证风道内表面的平整光滑。可以用冷(热)轧钢板(料厚0.5-1.5)加工后喷塑防护,也可以采用镀锌钢板、不锈钢板、铝板、硬聚氯乙

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 技术资料 > 其它资料

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服