《混合运算和应用题教案.docx》由会员分享,可在线阅读,更多相关《混合运算和应用题教案.docx(21页珍藏版)》请在第一文库网上搜索。
1、四则运算的知识和技能是小学生学习数学需要掌握的基础知识和基本技能,以往的小学数学教材在四年级时要对以前学习过的四则运算知识进行较为系统的概括和总结,如概括出四则运算的意义,对于这些内容,新版教材在本册分为“四则运算”和“运算定律”两个单元。本单元的四则运算结合现实问题,较为系统地介绍了四则混合运算和运算的顺序,这样的编排既让学生有较长的时间通过丰富的现实素材逐步体会、理解混合运算以及运算顺序,分散了教学的难点,减轻了学生的学习负担;由于有了现实的背景,也使得原来枯燥的计算教学变得生动、有趣。同时,在丰富的感性经验的基础上,四年级出现比较抽象的运算顺序,符合学生学习数学的认知规律,并可以促进学生
2、思维水平的提高。一、本单元教学内容:1 .加、减法的意义和各部分间的关系。2 .乘、除法的意义和各部分间的关系。3 .运算顺序。4 .解决问题。二、重、难点设置:重点:四则运算的意义和各个部分间的关系,通过线段图的展示、算式的比较,直接、明了地揭示了加、减法之间及乘、除法之间的关系。其中“逆运算”概念是教学的难点,要让学生清楚,“逆”是相反的意思,“逆运算”就是相反的运算。难点:四则混合运算的运算顺序和运用四则混合运算解决简单的实际问题,教学时,要让学生在丰富的现实情境中感悟、体会和理解四则混合运算的运算规则;解决实际问题时,要体会假设法的优越性,形成基本的解决租船问题的解题思路。学情分析/本
3、单元是学生在能初步计算加、减、乘、除运算的基础上,对四则运算的意义和各个部分间的关系进行概括和归纳的,学生已经学会按从左往右的顺序计算两步式题,并且知道小括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的运算顺序进行整理。本单元的教学对象是四年级学生,他们的思维由具体形象思维逐渐向抽象逻辑思维过渡,根据这一特点,教学中,采用根据线段图列算式,观察算式之间的关系,概括加、减、乘、除的意义等手段,进一步发展学生的抽象逻辑思维。同时,教学中恰当运用多媒体演示,吸引学生的注意力,调动学生思维的积极性。L理解加、减、乘、除的意义以及它们各部分之间的关系。2.掌握与0有关的运算,知道一个
4、数加0还得这个数、被减数等于减数差是0、0除以一个非0的数还得0、一个数和0相乘还是0。3 .认识中括号,知道四则运算的含义,会计算有括号的四则混合运算。4 .解答租船问题时,学会先进行假设,然后根据实际人数进行选择和确定最佳的方案。1 .本单元主要内容有四则运算的意义、整理同级运算的运算顺序、整理含两级运算的运算顺序及含有小括号的运算顺序、有关0的运算等。教学时,要让学生在经历解决问题的过程中,感受混合运算顺序的必要性,掌握混合运算的顺序,同时,要注意加强数量关系的分析,在叙述解题思路时,要引导学生透过数看到量,用量的关系来描述解题思路。2 .在教学中,充分发挥学生的主体作用,借用各种教学手
5、段来调动学生的枳极性,使学生参与知识形成的全过程。通过学生的想一想、看一看、说一说、做一做等悟出知识的真谛,以求得其思维的发展,能力的培养,体验成功后的喜悦。3 .教师要注重从学生的生活实际出发,设计习题内容时,尽量与生活贴近,同时也可以让学生自己解决问题,然后从中互相提出问题,这样,不仅引导学生将生活问题转化为数学问题而且还可以提高学生互问互答的好习惯,而且也体现了以“学生为主、教师为辅”的教学效果。4 .运用知识的迁移进行教学。在教学中,教师要以学生原有的知识为基础,把旧知与新知联系在一起,再结合具体的实例进行教学。5 .注意概念的归纳与概括。在教学有余数除法的概念时,可以通过与整除对比的
6、方法,让学生从中发现问题,并从发现中归纳总结出什么叫做“有余数的除法”,这样可以让学生从感性认识上升到理性认识,也可以避免学生死记硬背的现象。1力1、减法的意义和各部分间的关系1课时2乘、除法的意义和各部分间的关系 2课时3括号1课时4租船问题1课时口一加、做法的意义部备都夕回的关第?教学内容加、减法的意义和各部分间的关系教材第2、第3页的内容及第4页练习一。教学目标1 .结合具体的现实问题,理解加、减法的意义,掌握加、减法各部分的名称。2 .在具体情境中,体会加法、减法各部分之间关系及加、减法之间的互逆关系,并会在实际中应用,渗透辩证唯物主义的思想。3 .经历揭示加、减法之间的关系的探究过程
7、,有与同学合作交流的体验,提高学生的概括能力。重点难点重点:理解加、减法的意义以及加、减法各个部分的名称,各个部分之间的关系。难点:在具体情境中体会加、减法之间的互逆关系,理解“减法是加法的逆运算二教具学具多媒体课件。教学过程情境导入(课件出示西宁到拉萨的铁路情景图)师:从图中可以看出从西宁到拉萨要经过哪里?生:格尔木。师:如果我们把西宁到拉萨的铁路看成一个整体,这一整体被分成了几部分?生:西宁到拉萨的铁路被分为西宁到格尔木段和格尔木到拉萨段这两部分。师:以前我们学过加、减法的一些知识,这节课我们借助这一情境进一步学习加、减法的一些概括性知识,这将对我们以后的学习有很大帮助。till自主探究1
8、.认识加法及加法各个部分的名称。师:播放课件。(西宁到格尔木的铁路长814km,格尔木到拉萨的铁路长1142km,你知道西宁到拉萨的铁路长多少千米吗)师:看图读题,说说你是怎样理解情景图中给出的数学信息的。生1:如果把西宁到拉萨的铁路长看成一个整体,那么西宁到格尔木的铁路长和格尔木到拉萨的铁路长就是两个组成部分。生2:情景图中给出的已知信息是西宁到格尔木的铁路长814km、格尔木到拉萨的铁路长1142km,所求的问题是西宁到拉萨的铁路长是多少千米。师:你能试着自己在练习本上用图表示出“西宁一格尔木拉萨”之间的铁路关系吗?学生尝试画图,最后投影展示:814km1142km西宁格尔木拉萨师:读线段
9、图,如果求西宁到拉萨的铁路长,用什么方法计算?你知道吗?生:如果把西宁到格尔木的铁路和格尔木到拉萨的铁路分别看作两个部分,把西宁到拉萨的铁路看作一个整体,求西宁到拉萨的铁路长多少千米,要用加法计算。师:你能写出数量关系式并列式计算吗?生1:西宁到格尔木的距离+格尔木到拉萨的距离;西宁到拉萨的距离生 2:814+1142=1956(km)或者 1142+814=1956(km)师:像上面这样,把两个数合并成一个数的运算,叫做加法。(课件出示:把两个数合并成一个数的运算,叫做加法)师:在上面的加法算式中,814和1142叫做这个算式的加数,1956叫做这个算式的和。(课件出示在加法中相加的两个数叫
10、做加数,加得的数叫做和)1142 + 814 = 1956III加数加数和t tt814 + 1142 = 1956师:一个数同0相加结果怎样?生:一个数同0相加还得这个数。【设计意图:结合具体的情境问题,理解加法的意义是把两个数合并成一个数的运算,将枯燥的加法的意义用求西宁到拉萨的铁路长这一具体的情境来承载,降低了学习的难度,为学生理解加法的意义创造了条件】2 .认识减法和减法各个部分的名称。观察课件(西宁一格尔木拉萨铁路情景图),出示以下问题:(1)如果已知西宁到拉萨的铁路全长1956km,其中西宁到格尔木长814km,你能求出格尔木到拉萨的铁路长多少千米吗?(2)如果已知西宁到拉萨的铁路
11、全长1956km,其中格尔木到拉萨长1142km,你能求出西宁到格尔木的铁路长多少千米吗?师:读上面的两个数学问题,对比这两个数学问题有哪些相同和不同的地方?生1:相同点是上面的两个数学问题都是己知西宁到拉萨的铁路长是1956km。生2:不同点是中已知西宁到格尔木的铁路长;中是已知格尔木到拉萨的铁路长。师:像上面这样,已知整体和其中的一个部分求另一部分都用什么方法计算?小组讨论汇报。生:已知整体和其中的一部分,求另一部分用减法计算。师:你会解答上面的问题吗?解答时,根据哪些数量关系式?(1)西宁到拉萨的距离西宁到格尔木的距离;格尔木到拉萨的距离1956-814=1142(km)西宁到拉萨的距离
12、格尔木到拉萨的距离=西宁到格尔木的距离1196-1142=814(km)(课件出示)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。在减法中,已知的和叫做被减数,减去的已知加数叫做减数,求出的未知数叫做差。1956 -814 =1142III被减数减数差t tt1956 - 1142 = 814【设计意图:通过对比、概括、归纳总结彳导出减法是已知两个加数的和与其中的一个加数,求另一个加数的运算。将抽象的数学概念通过具体的实例来感悟,进一步深化和内化了减法意义的实质】3 .加、减法各部分间的关系以及加、减法之间的互逆关系。师:根据上面的问题,给出一个加法算式,你可以得出两个减法算式
13、吗?生:给出一个加法算式,可以写出两道减法算式。算式 1142+814=1956师:根据上面的算式,你能总结出加法各部分间的关系吗?生1:和二加数+加数生2:加数;和.另一个加数师:观察上面的三个算式,你还能得出什么结论?生:根据算式1956-1142=814也可以得出师:根据上面的算式,你能概括出减法各个部分之间的关系吗?生1:差=被减数-减数生2:被减数二差+减数生3:减数=被减数-差探究结果汇报师:同学们,今天我们学了哪些知识?师生共同总结:加、减法的意义和各部分间的关系(板书)。师:关于这一知识,你知道了些什么?生1:把两个数合并成一个数的运算叫做加法,在加法中,相加的两个数叫做加数,
14、加得的数叫做和。生2:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法,在减法里,已知的和叫做被减数,一个加数是减数,另一个加数是差。师:在加法中,加法各个部分之间的关系是怎样的?生:和=加数+加数加数=和-另一个加数师:在减法中,减法各个部分之间的关系是怎样的?生:差=被减数减数被减数=差+减数减数=被减数差设计意图:引导学生自己总结出加、减法的意义以及相关知识,利于学生思维的发展】画II师生总结收获III师:通过今天的学习,你对加、减法意义的理解有哪些新的收获?生1:已知两个部分求整体时,用加法计算;己知整体和一部分,求另一部分时用减法计算。生2:根据一个加法算式,可以写出两个
15、减法算式;根据一个减法算式,可以写出一个加法算式和一个减法算式。师:加、减法之间有怎样的关系?生:加、减法是互逆的运算。师:在总结加、减法的意义和探究它们各个部分之间的关系时,你用到了哪些数学思想和方法?生1:数学思想有概括、归纳和总结等。生2:数学方法有探究、分情况讨论等。板书设计力口、减法的意义和各部分间的关系加法:减法:(减法是加法的逆运算)1142 + 814 = 1956加数加数和814 + 1142 = 19561956 -814 =1142被减数减数差1956 - 1142 = 814和=加数+加数差=被减数-减数加数=和-另一个加数被减数=差+减数匕2乘、除法的意义和舟部方向的关系透教学内容乘、除法的意义和各部分间的关系教材第5、第6页的内容及第7页练习二的第16题。教学目标1 .结合具体问题理解乘、除法的意义,