第一电影-夕阳别动队-问题.docx

上传人:lao****ou 文档编号:445004 上传时间:2023-11-19 格式:DOCX 页数:11 大小:42.91KB
下载 相关 举报
第一电影-夕阳别动队-问题.docx_第1页
第1页 / 共11页
第一电影-夕阳别动队-问题.docx_第2页
第2页 / 共11页
第一电影-夕阳别动队-问题.docx_第3页
第3页 / 共11页
第一电影-夕阳别动队-问题.docx_第4页
第4页 / 共11页
第一电影-夕阳别动队-问题.docx_第5页
第5页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第一电影-夕阳别动队-问题.docx》由会员分享,可在线阅读,更多相关《第一电影-夕阳别动队-问题.docx(11页珍藏版)》请在第一文库网上搜索。

1、Sing1eImageSubspaceforFaceRecognitionJun1iu,SongcanChen,Zhi-HuaZh0u2,andXiaoyangTani1DepartmentofComputerScienceandEngineering,NanjingUniversityofAeronauticsandAstronautics,China,j.1iu,s.chen,x.iang2Nationa1Key1aboratoryforNove1SoftwareTechno1ogy,NanjingUniversity,ChinazhouzhAbstract.Sma11samp1esize

2、andseverefacia1variationaretwocha11engingprob1emsforfacerecognition.Inthispaper,weproposetheSIS(Sing1eImageSubspace)approachtoaddressthesetwoprob1ems.Todea1withtheformerone,Werepresenteachsing1eimageasasubspacespannedbyitssynthesized(shifted)samp1es,andemp1oyanew1ydesignedsubspacedistancemetrictomea

3、surethedistanceofsubspaces.Todea1withthe1atterone,wedivideafaceimageintosevera1regions,computethecontributionscoresofthetrainingsamp1esbasedontheextractedsubspacesineachregion,andaggregatethescoresofa11theregionstoyie1dtheu1timaterecognitionresu1t.Experimentsonwe11-knownfacedatabasessuchasAR,Extende

4、dYA1EandFERETshowthattheproposedapproachoutperformssomerenownedmethodsnoton1yinthescenarioofonetrainingsamp1eperperson,buta1sointhescenarioofmu1tip1etrainingsamp1esperpersonwithsignificantfacia1variations.1 IntroductionOneofthemostcha11engingprob1emsforfacerecognitionistheso-ca11edSma11Samp1eSize(SS

5、S)prob1em18,25,i.e.,thenumberoftrainingsamp1esisfarsma11erthanthedimensiona1ityofthesamp1es.Meanwhi1e,thefacerecognitiontaskbecomesmoredifficu1twhenthetestingsamp1esaresubjecttoseverefacia1variationssuchasexpression,i11umination,occ1usion,etc.Todea1withtheSSSprob1em,weproposetorepresenteachsing1e(tr

6、aining,testing)imageasasubspacespannedbyitssynthesizedimages.Theemp1oyedsynthesizedimagesaretheshiftedimagesoftheorigina1sing1efaceimageandthuscanbeefficient1yobtainedwithoutadditiona1computationandstoragecosts.Tomeasurethedistancebetweensubspaces,wedesignasubspacedistancemetricthatisapp1icab1etosub

7、spaceswithunequa1dimensions.Moreover,toimprovetherobustnesstotheaforementionedfacia1variations,wedivideafaceimageintoregions,computethecontributionscoresofthetrainingsamp1esbasedontheextractedsubspacesineachregion,andfina11yaggregatethescoresofa11theregionstoyie1dtheu1timatec1assificationresu1t.Sinc

8、etheproposedapproachgeneratesasubspaceforeachimage(orapartitionedregionofanimage),itisnamedasSIS(Sing1eImageSubspace).Experimentsonsevera1we11-knowndatabasesshowthattheproposedSISapproachachievesbetterc1assificationperformancethansomerenownedmethodsinthescenariosofbothonetrainingsamp1eperpersonandmu

9、1tip1etrainingsamp1esperpersonwithsignificantfacia1variations.Inwhatfo11ows,wewi11brief1yreviewthere1atedworkinSection2,proposetheSISapproachinSection3,reportonexperimenta1resu1tsinSection4,andconc1udethispaperwithsomediscussioninSection5.2 Re1atedWorkIndea1ingwiththeSSSprob1em,thefo11owingtwoparadi

10、gmsareoftenemp1oyed:1)performingdimensiona1ityreductionto1owerthesamp1edimensiona1ity,and2)synthesizingvirtua1samp1estoen1argethetrainingset.Amongthemanyexistingdimensiona1ityreductionmethods,PCA(Principa1ComponentAna1ysis,Eigenfaces)20and1DA(1inearDiscriminantAna1ysis,Fisherfaces)Iarewe11-knownandh

11、avebecomethede-factobase1ines.1ateradvancesonPCAand1DAinc1udeBayesianIntraZExtrapersona1C1assifier(BIC)13,DiscriminantCommonVectors(DCV)4,9,etc.OurproposedSISapproachworksa1ongthesecondparadigm,i.e.,synthesizingvirtua1samp1es,whoseeffectivenesshasbeenverifiedinquiteafewstudies3,11,16,19,23.In3,Beyme

12、randPoggiosynthesizedvirtua1samp1esbyincorporatingpriorknow1edge,andyie1dedac1assificationaccuracyof82%withonerea1and14virtua1imagescomparedto67%withon1yrea1samp1esonadatabaseof62persons.Niyogieta1.14showedthatincorporatingpriorknow1edgeismathematica11yequiva1enttointroducingaregu1arizerinfunction1e

13、arning,thusimp1icit1yimprovingthegenera1izationoftherecognitionsystem.In23,WuandZhouenrichedtheinformationofafaceimagebycombiningthefaceimagewithitsprojectionmap,andthenapp1iedPCAtotheenrichedimagesforfacerecognition.Theyreported3-5%higheraccuracythanPCAthroughusing10-15%fewereigenfaces.Martinez11pr

14、oposedthe1oca1Probabi1isticSubspace(1PS)method.Specifica11y,Martinezsynthesizedvirtua1samp1esbyperturbationanddividedafaceimageintosevera1regionswheretheeigenspacetechniquewasapp1iedtothegeneratedvirtua1samp1esforc1assification.Goodperformanceof1PSwasreportedontheAR12facedatabase.In16,Shaneta1.propo

15、sedtheFace-SpecificSubspace(FSS)method.Theysynthesizedvirtua1samp1esbygeometricandgray-1eve1transformation,bui1tasubspaceforeverysubject,andc1assifiedthetestingsamp1ebyminimizingthedistancefromtheface-specificsubspace.TheeffectivenessofFSSwasverifiedonfacedatabasessuchasYA1EB6.Torreeta1.19generatedv

16、irtua1samp1esbyusing15()1inearandnon-1inearfi1ters,andbui1tanOrientedComponentAna1ysis(OCA)c1assifieroneachrepresentation.Bycombiningtheresu1tsofthe15()OCAc1assifiers,theyachievedgoodperformanceontheFRGCv1.()dataset.Thesynthesizedsamp1esareusua11yexp1oitedforgeneratingasubspace.Therearerough1ythreesty1esforgeneratingthesubspace:1)generatingasubspacefromthewho1een1argedtrainingset,e.g.,3,11,23,2)generatingasubspacefro

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 应用文档 > 汇报材料

copyright@ 2008-2022 001doc.com网站版权所有   

经营许可证编号:宁ICP备2022001085号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



客服