《碱激发剂种类对碱激发镍渣胶凝材料性能的影响.docx》由会员分享,可在线阅读,更多相关《碱激发剂种类对碱激发镍渣胶凝材料性能的影响.docx(9页珍藏版)》请在第一文库网上搜索。
1、碱激发剂种类对碱激发银渣胶凝材料性能的影响摘要:通过标准稠度用水量、凝结时间、抗折与抗压强度、同步热分析和孔结构试验研究了不同碱激发剂(NaOH.NaOHZNa2CO3,水玻璃)对碱激发银渣胶凝材料(JNC)工作性能及力学性能的影响。研究结果表明:相同碱掺量下,与NaOH和NaoH/Na2CO3相比,水玻璃激发JNC的凝结时间最短,且平均孔径和总孔体积均最小、无害孔及少害孔比例最大,其力学性能最好;与NaoH相比,当采用NaOH/Na2CO3为激发剂时,JNC的凝结时间最长,且平均孔径和总孔体积均较小、无害孔及少害孔比例较大,从而其力学性能较好。关键词,银渣;标准稠度用水量:凝结时间:强度:孔
2、结构Inf1uenceofdifferenta1ka1i-activatortypeonperformanceofa1ka1i-activatednicke1s1agcementitiousmateria1Abstract:Basedonthetestsofwaterrequirementofnorma1consistency,settingtime,f1exura1strength,compressivestrength,simu1taneoustherma1ana1ysisandporestructure,theinf1uenceofdifterenta1ka1i-activator(Na
3、OH,NaOHNa2CO3,waterg1ass)ontheworkingperformanceandmechanica1propertiesofa1ka1i-activatednicke1s1agcementitiousmateria1wasstudied.Theresearchresu1tsshowthatcomparedwithNaOHandNaOHNa2CO3,thecementpasteoftheJNCisactivatedbywaterg1ass,whosesettingtimeistheshortest,averageporediameterandthetota1porevo1u
4、mearethesma11est,andtheharm1essporesand1essharmfu1ho1esarethe1argest,soitsmechanica1propertiesarethebest.ComparedwithNaOH,whenusingNaOHNa2CO3asactivator,thesettingtimeisthe1ongest,theaverageporesizeandtota1porevo1umearesma11er,theratioofharm1essho1esand1essharmfu1ho1esare1arger,soitsmechanica1perfor
5、manceisbetter.Keywords:nicke1s1ag,waterrequirementofnorma1consistency,settingtime,strength,porestructure引言有色金属渣通常是在铅、锌、银及铜在生产工程中所产生的废渣,其中有色金属渣的一半是来自银的生产,1/3来自铜的生产,其余来自锌的生产。据统计,我国的有色冶金废渣堆放量已达到7438X1O4t,占地面积为865XIO,n12,并且还以年排放量约920XIO,t的速度逐年增加。如此众多的工业废渣占用大量土地,严重污染环境,有必要对其进行处理,变废为宝。银渣属于有色冶金废渣,是银冶炼厂和不锈钢
6、冶炼厂排放的一种工业废渣,其形成过程是将熔融态的银铁渣经水淬急冷后使之形成粒化炉渣。目前,对银渣的研究主要应用于水泥混凝土集料、生产建筑砌块W1以及制作玻璃微晶1:赵铁城、肖忠明的研究表明水淬银渣可表现为较好的胶凝特性。而碱激发剂对银渣激发的研究还未见报道,因此本文有必要研究不同碱激发剂对碱激发银渣胶凝材料性能的影响,从而制备出优良性能的水泥基材料,为有色金属渣的应用奠定基础。1试验研究1.1 试验材料1.1.1 锲渣:采用福建源鑫集团提供的银渣,比表面积为425.6m2kg,其主要化学成分见表1,其XRD图谱见图K表1银渣的化学成分Tab.1Chemica1compositionofnick
7、e1s1ag氧化物SiO2CaOA12O3MgOFe2O3SO3MnOK2ONa2O其他含量(%)24.8932.1517.469.612.662.241.180.410.399.0110152025303540455055606570758085902(。)图1银渣的XRD图谱Fig.1XRDspectrumofnicke1s1ag由表1知,锲渣主要以Sio2、CaOAbCh和MgO为主,占84%以上,其中CaO含量高达32%,高于SiOz的含量,属于高钙银渣,具有与矿渣闾相似的胶凝特性。由图1知,锲渣的X衍射图谱主要由少许微弱的衍射峰,全谱在3045。之间存在较大的“馒头峰”,知锲渣的物相
8、组成主要为玻璃相,这是由于银渣产生过程决定的,银渣经过高温熔融后并通过水淬快速冷却得到,在高温下,其玻璃相来不及结晶,冷却后主要以无定形态存在。银渣中还存在一些结晶物质,即主要以方解石(Ca2CO3)、镁铝尖晶石(MgA12。4)、尖晶橄榄石(Mg,Fe)2SiO4)以及硅酸镁(MgMSiOQ)为主。1.1.2 氢氧化钠:由天津市恒兴化学试剂制造有限公司生产,为颗粒状,纯度大于96.0%。1.1.3碳酸钠:由天津市恒兴化学试剂制造有限公司生产,为颗粒状,纯度大于96.0%。1.1.4 水玻璃:由品杰仪器有限责任公司提供的水玻璃,其中NaSio3固体含量为36.0%,SiCh含量为27.22%,
9、Na2O含量为8.78%。1.1.5 标准砂:采用由厦门艾思欧标准砂有限公司生产的ISO标准砂。1.1.6 水:取自福建同利建材厂的自来水,满足JGJ63-2006混凝土用水标准的要求。1.2 配合比碱激发剂种类(NaOH.NaoH/Na2CO3及水玻璃(WG)对碱激发锲渣胶凝材料(JNC)的工作性能(标准稠度用水量、凝结时间)按照GBfrI346-2011水泥标准稠度用水量、凝结时间、安定性检验方法。的方法进行试验,用于研究碱激发剂种类对JNC抗折与抗压强度影响的配合比见表2。表2砂浆试验配合比Tab.2Mixproportionofmortar料银渣Na2ONa2ONa2O胶砂比水胶比序(
10、NaOH)(Na2CO3)(水玻璃)NH33%-NH44%-NH55%-NH66%-NH88%-NN515%1%-NN42100%4%2%-1:2.50.42NN333%3%-NS4-4%NS5-5%NS6-6%NS8-8%NS1O-10%注:NaOH、Na2CO3及水玻璃掺量按NazO量计,水玻璃模数为1.2,胶砂比为(银渣+碱激发剂)/标准砂;水胶比为水/(锲渣+碱激发剂)。2试验方法2.1 试件成型工艺2.1.1 搅拌工艺按表2中的配合比称量银渣与标准砂,倒入砂浆搅拌机中干拌3min,加入碱激发剂溶液(将碱激发剂溶于水制成的溶液)迅速搅拌,先低速搅拌180s,再高速搅拌90s,搅拌成均匀
11、的水泥砂浆,将搅拌好的砂浆倒入40mm40mm160mm的钢质模具。2.1.2 养护工艺试块在标准养护条件下(养护温度202、相对湿度95%)带模养护1天后拆模,并继续在养护间养护至规定龄期。2.2 强度试验取标准养护龄期为3d、7d、28d龄期的JNC试块进行强度试验,其抗折强度与抗压强度的测试方法参照规范水泥胶砂强度检验方法(GB/T17671-2011)侬。2.3 XRD试验采用福州大学化肥催化剂国家工程研究中心提供的X/PertProMPD型X射线粉末衍射仪,29。测量范围:0167。,采用连续扫描方式。将标准养护下的砂浆试块在养护3d、28d龄期时取出压碎,选取压碎后的砂浆小试块,用
12、玛瑙研钵进行研磨至400m2kg,进行XRD试验。2.4 同步热分析试验采用福州大学测试中心的DI1402C型号热分析系统进行分析,将养护龄期达到3d及28d试块破碎后,选取已破碎的内部的水泥试块放到玛瑙研钵中进行研磨,然后通过200目的筛子过筛样品,并用通过筛子的粉末进行TG-DSC试验测试。2.5 孔结构试验采用福州大学化肥催化剂国家工程研究中心提供的ASAP2023M型全自动比表面积及微孔孔径分析仪进行孔结构试验。将标准养护的砂浆试块在养护3d、28d龄期时取出压碎,取破碎后的小块再用锤了敲击成直径约为25mm的水泥石小块,然后进行孔结构试验。3试验结果3.1标准稠度用水量不同碱激发剂种
13、类对JNC标准稠度用水量的影响结果见图2o图2碱激发剂种类对JNC标准稠度用水量的影响Fig.2Effectofa1ka1i-activatortypeonwaterrequirementofnorma1consistencyofJNC注:纵坐标P值代表标准稠度用水量由图2的NaOH曲线知,JNC的P值随NaoH掺量的增加而降低,这是因为JNC中含有银渣和NaOH,当随着NaOH掺量的增加,一方面是银渣的用量相对于NaoH量降低,使银渣总比表面积降低,所需用水量降低;另一方面是NaoH在水溶液中水解更多的OH-,由于碱具有表面活性作用1网,有助于降低P值。由NaOH/Na2CO3的曲线知,JN
14、e的P值总体是随着Na2CO3的取代量增加而降低,这是因为当Na2CO3掺量逐渐增加,Na2CO3在溶液中水解出CO3以HCOCOH-,且碱及阴离子附着与银渣表面,由于碱及阴离子具有表面活化作用,有利于降低JNC的P值。由水玻璃曲线知,JNC的P值随着水玻璃掺量的增加呈现先增大后减小的趋势;碱掺量从4%增至5%,其P值有所增加,这可能是因为水玻璃水解出硅胶与OH,随着碱掺量增加,其碱性增加,促使银渣颗粒的水解,加速银渣的水化反应,在搅拌过程中产生不易流动的水化产物(如C-S-H),导致P值增加;当碱掺量超过5%时,虽会提高溶液的碱环境,但碱掺量的增加相应地降低了银渣的用量即降低材料的总比表面,
15、此时总表面积降低的效应大于碱的激发作用,因此降低了标准稠度用水量。3.2凝结时间不同碱激发剂种类对JNC凝结时间的影响结果见图3。Na,0(%)图3碱激发剂种类对JNC凝结时间的影响Fig.3Effectofa1ka1i-activatortypeonsettingtimeofJNC注:I代表初凝时间;F代表终凝时间。由图3的NaoH曲线知,JNC的凝结时间随NaOH掺量的增加而缩短,这是由于随着碱掺量的增加,有效地增加浆体的碱度,溶液中的PH值升高,促进银渣玻璃体迅速解体并与溶液中的Ca?+等离子反应生成C-S-H等水化产物,从而导致JNC的凝结时间缩短。由NaOH/Na2CO3曲线知,JNC的凝结时间随Na2CO3掺量增加而呈现先延长后缩短的趋势。当Na2CO3掺量在0%2%范围内增加时,JNC的凝结时间逐渐延长,这是因为Na2CO3属于强碱弱酸盐,虽其可水解出