《小型风力发电机的认知.doc》由会员分享,可在线阅读,更多相关《小型风力发电机的认知.doc(22页珍藏版)》请在第一文库网上搜索。
1、小型风力发电机的认知一、任务导入你见过风力发电机吗?如果你还没有见过一台真正的风力发电机的话,那么,有一样东西,你肯定是不会陌生的,那就是儿童们逢年过节玩耍的“风车”,风力发电机就是由它逐渐演变而来的。二、相关知识学习情境1 风力发电机组的基本知识(一)风力发电技术风力发电技术是一项高新技术,它涉及气象学、空气动力学、结构力学、计算机技术、电子控制技术、材料学、化学、机电工程、电气工程、环境科学等十几个学科和专业,因此是一项系统技术。1风力发电技术的划分利用风力发电的尝试,早在20世纪初就已经开始了。20世纪30代,丹麦、瑞典、前苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装
2、置。这种小型风力发电机,广泛地存多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,发电机的功率较低,大都在5kW以下。一般来说,3级风就有利用的价值。但从经济合理的角度出发,风速大于4m/s才适宜于发电。据测定,一台55kW的风力发电机组,当风速为9.5m/s时,机组的输出功率为55kW;当风速为8m/s时,功率为38kW;当风速为6m/s时,功率只有16kW;而风速为5 m/s时,功率仅为9.5kW。可见风力越大,经济效益也越大。风能技术分为大型风电技术和中小型风电技术,虽然都属于风能技术,工作原理也相同,但是却属于完全不同的两个行业。具体表现在攻策导向不同、
3、市场不同、应用领域不同、应用技术更是不同,完全属于同种产业中的两个行业。因此,在我国风力机械行业会议上把大型风电和中小型风电区分出来分别对待。此外,为满足市场不同需求,延伸出来的风光互补技术不仅推动了中小型风电技术的发展,还为中小型风电开辟了新的市场。(1)大型风电技术 大型风电技术起源于丹麦、荷兰等一些欧洲国家,由于当地风能资源丰富,风电产业受到政府的助推,大型风电技术和设备的发展在国际上遥遥领先。目前,我国政府也开始助推大型风电技术的发展,并出台一系列政策引导产业发展。大型风电技术都是为大型风力发电机组研发的,而大型风力发电机组的应用区域对环境的要求十分严格,都是应用在风能资源丰富的资源有
4、限的风场上,常年接受各发电场各种各样恶劣的环境考验。环境的复杂多变性,使其对技术的高度要求直线上升。目前国内大型风电技术普遍还不成熟,大型风电的核心技术仍然依靠国外,此外,大型 图1-22 大型风力风电技术中发电并网的技术还在完善,一系列的问题还在制约大型风电技术的发展。如图1-22所示。(2)中小型风电技术在20世纪70年代,中小型风电技术在我国风况资源较好的内蒙古、新疆一带就已经得到了发展。最初中小型风电技术被广泛应用在送电到乡的项目中为一家一户的农牧民家用供电,随着技术更新的不断完善与发展,不仅能单独应用还能与光电互补被广泛应用于分布式独立供电。这些年来,随着我国中小型风电设备出口的稳步
5、提升,在国际上,我国的中小型风电技术和风 图1-23 小型风力发电站光互补技术已跃居国际领先地位。如图1-23所示。中小型风电技术的成熟受自然资源限制相对较小,作为分布式独立发电效果显著,不仅可以并网,而且还能结合光电形成更稳定可靠的风光互补发电系统,况且技术完全自主国产化,无论是技术还是价格在国际上都十分具有竞争优势。目前,国内中小型风电技术中的低风速启动、低风速发电、变桨距、多重保护等一系列技术得到国际市场的瞩目和国际客户的一致认可,已处于国际领先地位。况且中小型风电技术最终是为满足分布式独立供电的终端市场,而非如大型风电技术是满足发电并网的国内垄断性市场,技术的更新速度必须适应广阔而快速
6、发展的市场需求。2风力发电的优势风能是没有公害的能源之一,而且它取之不尽,用之不竭。对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,可因地制宜地利用风力发电。风能作为一种清洁的可再生能源,越来越受到世界各国的重视。每装一台单机容量为1MW的风能发电机,每年可以减排2000t二氧化碳(相当于种植1平方英里的树木)、lOt二氧化硫、6t二氧化氮。风能产生1MWH的电量可以减少0.80.9t的温室气体,相当于煤或矿物燃料一年产生的气体量。而且风机不会危害鸟类和其他野生动物。在常规能源告急和全球生态环境恶化的双重压力下,风能作为一种高效清洁的新能源有着巨大的发展潜力。如图1-24所示。
7、图1-24 风力发电与配电示意图风力发电,是面向未来最清洁能源之一。兆瓦级全功率风力发电变流器,是为风力发电机与电网之间建立的桥梁和纽带,它是一种将多变的风力电能变换成稳定的电能馈人电网的装置。随着大型风力发电机技术的成熟和产品商品化的进程,风力发电成本在逐年降低。风力发电不消耗资源、不污染环境,具有广阔的发展前景,建设周期一般很短,一台风机的运输安装时间不超过3个月,万千瓦级风电场建设期不到一年,而且安装一台可投产一台;装机规模灵活,可根据资金多少来确定,为筹集资金带来便利;运行简单,可完全做到无人值守;实际占地少,机组与监控、变电等建筑仅占风电场约1%的土地,其余场地仍可供农、牧、渔使用;
8、对土地要求低,在山丘、海边、河堤、荒漠等地形条件下均可建设,在发电方式上还有多样化的特点,既可联网运行,也可和柴油发电机等集成互补系统或独立运行,这对于解决边远无电地区的用电问题提供了现实可能性。由于风电市场的扩大、风电机组产量和单机容量的增加及技术上的进步,使风电机组每千瓦的生产成本在过去近20年中稳定下降。以美国为例,风力发电的成本降低了80%。20世纪80年代安装第一批风力发电机时,每发lkWh电的成本为30美分,而现在只需4美分。另外,由于风电机组设计和工艺的改进(如叶片翼型改进等),性能和可靠性提高,加上塔架高度增加及风场选址评估方法的改进等,使风电机组的发电能力有相当大的增长,每平
9、方米叶轮扫过面积的年发电量从20世纪80年代初期的400500kW.h,提高到目前的lOOOkW .h以上。一台标准的600kW风力发电机,当各种条件都是最佳状态时,每年可发电约2000万kWh,即每平方米叶轮扫过面积的年发电量可达14001500kW .h。目前风电场的容量系数(即一年的实际发电量除以装机额定功率与一年8760小时的乘积)一般为0.250.35。从风电场的造价方面来看,中国风电场的造价比欧洲高,基本上是欧洲5年前的水平,平均造价为8500元千瓦左右,建设一座装机10万千瓦的风电场,成本大约在810亿元,而同样规模的火电厂成本约为5亿元,水电站为7亿元。当然,独立运行的非并网风
10、电系统,由于需要蓄电池和逆变器等,同时容量系数较小,所以发电成本比并网型机组要高。从技术层面上来看,风电发展也经历了波折的历程。1887年,美国人CharlesF. Brush建造了第一台风力发电机组,叶片多达144个。此后,人们又经过一百多年艰辛的探索,多种技术经革新和市场应用的考验,才统一成今天的上风向、水平轴、三叶片、管式塔风力机。同时,每个时期的风电技术都有自身的历史局限性。例如,早在1941年,美国的Smith -Putnam风力机就装备了液压变桨距系统,但受制于当时的技术水平,装置庞大、笨重、复杂。定桨距的Gedser风力机采用失速控制,叶尖有气动刹车装置,成为风电技术史的一座里程
11、碑。而到了今天,MW级大型风力机广泛采用大叶片,因所承受的气动推力大,对生产工艺要求很高,变桨距技术又成为技术主流。而相关领域技术上的突破,又会推动风电技术不断向前发展。如全功率逆变器曾因复杂、不可靠等因素让人望而却步,而大功率IGBT/IGCT的成熟和多电平技术的完善,使之在技术上完全成为可能。风电技术日趋成熟,产品质量可靠,可用率已达95%以上,已是一种安全可靠的能源,风力发电的经济性日益提高,发电成本已接近煤电,低于油电与核电,若计及煤电的环境保护与交通运输的间接投资,则风电经济性将优于煤电。对沿海岛屿、交通不便的边远山区、地广人稀的草原牧场,以及远离电网和近期内电网还难以到达的农村、边
12、疆来说,可作为解决生产和生活能源的一种有效途径。3风力发电机系统构成把风的动能转变成机槭能,再把机械能转化为电能,这就是风力发电。风力发电技术是一项多学科、可持续发展、绿色环保的综合技术。风力发电所需要的装置称为风力发电机组。风力发电机组主要由两大部分组成:风力机部分将风能转换为机械能;发电机部分将机械能转换为电能。根据风力发电机组这两大部分采用的不同结构类型及它们分别采用技术的不同特征和不同组合,风力发电机组可以有多种多样的分类。风力发电机组主要由风轮、传动与变速机构、发电机、塔架、迎风及限速机构组成。大型风力发电机组发出的电能直接并到电网,向电网馈电;小型风力发电机一般将风力发电机组发出的
13、电能用储能设备储存起来(一般用蓄电池),需要时再提供给负载(可直流供电,也可用逆变器变换为交流供给用户)。如图1-25所示。图1-25 风力发电原理示意图(1)风轮风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向桨叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、质量小,目前多用玻璃钢或其他复合材料(如碳纤维)来制造。风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。一般风力发电机的风轮由2个或3个叶片构成。在风的吹动下,风轮转动起来,使空气动力能转变发电机轴旋转,带动三相发电机发出三相交流电。(2)调向机构调向机构是用来调整
14、风力发电机的风轮叶片与空气流动方向相对位置的机构,其功能是使风力发电机的风轮随时都迎着风向,从而能最大限度地获取风能。因为当风轮叶片旋转平面与气流方向垂直时,也即是迎着风向时,风力发电机从流动的空气中获取的能量最大,因而风力发电机的输出功率最大,所以调向机构又称为迎风机构(国外通称偏航系统)。小型水平轴风力机常用的调向机构有尾舵和尾车,在风电场中并网运行的中大型风力机则采用伺服电动机构。(3)发电机在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能。发电机在风轮轴的带动下旋转
15、发电。容量在lOkW以下的小型风力发电机组,采用永磁式或自励式交流发电机,经整流后向负载供电及向蓄电池充电;容量在1OOkW以上的并网运行的风力发电机组,则采用同步发电机或异步发电机。恒速同步发电机的优点是,通过励磁系统可控制发电机的电压和无功功率,发电机效率高。同步发电机机要通过同步设备的整步操作达到准同步并网(并网困难),由于风速变化大,以及同步发电机要求转速恒定,风力机必须装有良好的变桨距调节机构。恒速异步发电机结构简单,坚固,造价低。异步发电机投入系统运行时,由于是靠转差率来调节负荷,因此对机组的调节精度要求不高,不需要同步设备的整步操作,只要转速接近同步速时就可并网,且并网后不会产生
16、振荡和失步。缺点是并网时冲击电流幅值大,不能产生无功功率。(4)升速齿轮箱由于风轮的转速比较低,而且风力的大小和方向经常变化着,这使转速不稳定;所以,在带动发电机之前,必须附加一个把转速提高到发电机额定转速的变速齿轮箱,再加一个调速机构使转速保持稳走,然后再连接到发电机上。升速齿轮箱的作用是将风力机轴上的低速旋转输入转变为高速旋转输出,以便与发电机运转所需要的转速相匹配。(5)塔架塔架是支承风轮、尾舵和发电机的构架。它一般比较高,以捕捉更多的风能,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在620m范围内。塔架是风力发电机的支撑机构,稍大的风力发电机塔架一般采用由角钢或圆钢组成的桁架结构。(6)控制系统lOOkW以上的中型风力发电机组及1